Spectrum Sharing Paradigm Under Primary Interference and Nakagami-m Fading: Security Analysis

  • Thiem Do-Dac
  • Khuong Ho-VanEmail author


The spectrum sharing paradigm is a promising countermeasure to the spectrum under-utilization problem. However, it causes both primary interference (inflicted by primary transmitters upon secondary receivers) and secondary interference (inflicted by secondary transmitters upon primary receivers) and un-secures information transmission. Most works ignored the primary interference and considered the Rayleigh fading in evaluating the information security of the spectrum sharing paradigm. This paper generalizes these works with considerations of the primary interference and the Nakagami-m fading. First, the exact expression of the secrecy outage probability is proposed for the spectrum sharing paradigm under considerations of both primary/secondary interferences, the Nakagami-m fading, and the peak transmit and interference power constraints. Then, computer simulations are provided to corroborate the proposed expression. Finally, numerous simulation/theory results are generated to assess the security performance in key system parameters such as the fading severity degree, the primary interference level, the peak transmit power, the peak interference power, the security threshold.


Secrecy outage Spectrum sharing paradigm Primary interference Nakagami-m fading 



This research is funded by Vietnam National University - Ho Chi Minh City (VNU-HCM) under grant number B2019-20-01.


  1. 1.
    Ho-Van, K. (2017). Influence of channel information imperfection on outage probability of cooperative cognitive networks with partial relay selection. Wireless Personal Communications, 94(4), 3285–3302.CrossRefGoogle Scholar
  2. 2.
    Xu, X., Yang, W., & Cai, Y. (2017). Opportunistic relay selection improves reliability–reliability tradeoff and security–reliability tradeoff in random cognitive radio networks. IET Communications, 11(3), 335–343.CrossRefGoogle Scholar
  3. 3.
    Barros, J. & Rodrigues, M. (2006). Secrecy capacity of wireless channels. In Proceedings of IEEE international symposium on information theory: Seattle, WA, USA (pp. 356–360).Google Scholar
  4. 4.
    Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels. Hoboken: Wiley.Google Scholar
  5. 5.
    Wang, C., & Wang, H. M. (2014). On the secrecy throughput maximization for MISO cognitive radio network in slow fading channels. IEEE Transactions on Information Forensics and Security, 9(11), 1814–1827.CrossRefGoogle Scholar
  6. 6.
    Zhang, H., Sun, P., Li, C., Huang, Y., & Yang, L. (2017). Cooperative precoding for wireless energy transfer and secure cognitive radio coexistence systems. IEEE Signal Processing Letters, 24(5), 540–544.CrossRefGoogle Scholar
  7. 7.
    Wang, D., Ren, P., Du, Q., Sun, L., & Wang, Y. (2016). Cooperative relaying and jamming for primary secure communication in cognitive two-way networks. In Proceedings of IEEE VTC, Nanjing, China (vol. 15–18, pp. 1–5).Google Scholar
  8. 8.
    Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2016). Secrecy outage of a simultaneous wireless information and power transfer cognitive radio system. IEEE Communications Letters, 5(3), 288–291.CrossRefGoogle Scholar
  9. 9.
    Raghuwanshi, S., Maji, P., Roy, S. D., & Kundu, S. (2016) Secrecy performance of a dual hop cognitive relay network with an energy harvesting relay. In Proceedings of IEEE ICACCI, Jaipur, India (vol. 21–24, pp. 1622–1627).Google Scholar
  10. 10.
    Shah, H. A., & Koo, I. (2018). A novel physical layer security scheme in OFDM-based cognitive radio networks. IEEE Access, 6, 29486–29498.CrossRefGoogle Scholar
  11. 11.
    Sibomana, L., Tran, H., & Zepernick, H. J. (2015). On physical layer security for cognitive radio networks with primary user interference. In Proceedings of IEEE MILCOM, Tampa, FL (vol. 26–28, pp. 281–286).Google Scholar
  12. 12.
    Mou, W., Yang, W., Xu, X., Li, X., & Cai, Y. (2016) Secure transmission in spectrum-sharing cognitive networks with wireless power transfer. In Proceedings of IEEE WCSP, Yangzhou, Jiangsu, China (vol. 13–15, pp. 1–5).Google Scholar
  13. 13.
    Ho-Van, K., & Do-Dac, T. (2018). Impact of primary interference on secrecy performance of physical layer security in cognitive radio networks. Wireless Personal Communications, 100(3), 1099–1127.CrossRefGoogle Scholar
  14. 14.
    Khuong, H. V., Thiem, D. D., Ngoc, P. T. D., Tuan, N. T., Son, P. N., & Son, V. Q. (2017) Security performance analysis of underlay cognitive radio systems under interference from primary network and channel information inaccuracy. In Proceedings of IEEE ATC, Quy Nhon, Vietnam (vol. 18–20, pp. 108–113).Google Scholar
  15. 15.
    Lei, H., Gao, C., Ansari, I., Guo, Y., Zou, Y., Pan, G., et al. (2017). Secrecy outage performance of transmit antenna selection for MIMO underlay cognitive radio systems over Nakagami-\(m\) channels. IEEE Transactions on Vehicular Technology, 66(3), 2237–2250.CrossRefGoogle Scholar
  16. 16.
    Pei, Y., Liang, Y., Teh, K., & Li, K. (2010). Secure communication over MISO cognitive radio channels. IEEE Transactions on Wireless Communications, 9(4), 1494–1502.CrossRefGoogle Scholar
  17. 17.
    Yang, L., Jiang, H., Vorobyov, S., Chen, J., & Hailin, Z. (2016). Secure communications in underlay cognitive radio networks: User scheduling and performance analysis. IEEE Communications Letters, 20(6), 1191–1194.CrossRefGoogle Scholar
  18. 18.
    Yulong, Z., Xuelong, L., & Ying-Chang, L. (2014). Secrecy outage and diversity analysis of cognitive radio systems. IEEE JSAC, 32(11), 2222–2236.Google Scholar
  19. 19.
    Hui, Z., Hequn, L., Yaping, L., Chaoqing, T., & Gaofeng, P. (2015) Physical layer security of maximal ratio combining in underlay cognitive radio unit over Rayleigh fading channels. In Proceedings of IEEE ICCSN, Chengdu, China (Vol. 6–7, pp. 201–205).Google Scholar
  20. 20.
    Xu, X., He, B., Yang, W., Zhou, X., & Cai, Y. (2016). Secure transmission design for cognitive radio networks With Poisson distributed eavesdroppers. IEEE Transactions on Information Forensics and Security, 11(2), 373–387.CrossRefGoogle Scholar
  21. 21.
    Wenli, L., Li, G., Tianyu, K., Jianwei, Z., & Jiaru, L. (2015) Secure cognitive radio system with cooperative secondary networks. In Proceedings of IEEE ICT, Sydney, Australia (vol. 27–29, pp. 6–10).Google Scholar
  22. 22.
    Elkashlan, M., Wang, L., Duong, T. Q., Karagiannidis, G. K., & Nallanathan, A. (2015). On the security of cognitive radio networks. IEEE Transactions on Vehicular Technology, 64, 3790–3795.CrossRefGoogle Scholar
  23. 23.
    Lei, H., Zhang, H., Ansari, I. S., Gao, C., Guo, Y., Pan, G., et al. (2016). Secrecy outage performance for SIMO underlay cognitive radio systems with generalized selection combining over Nakagami-\(m\) channels. IEEE Transactions on Vehicular Technology, 65(12), 10126–10132.CrossRefGoogle Scholar
  24. 24.
    Pei, Y., Liang, Y., Teh, K., & Li, K. (2011). Secure communication in multiantenna cognitive radio networks with imperfect channel state information. IEEE Transactions on Signal Processing, 59(4), 1683–1693.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Fang, B., Qian, Z., Shao, W., & Zhong, W. (2016). Precoding and artificial noise design for cognitive MIMOME wiretap channels. IEEE Transactions on Vehicular Technology, 65(8), 6753–6758.CrossRefGoogle Scholar
  26. 26.
    Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). San Diego: Academic.zbMATHGoogle Scholar
  27. 27.
    Zou, Y., Wang, X., & Shen, W. (2013). Physical-layer security with multiuser scheduling in cognitive radio networks. IEEE Transactions on Communications, 61(12), 5103–5113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ho Chi Minh City University of TechnologyVietnam National University - Ho Chi Minh CityHo Chi Minh CityVietnam
  2. 2.Thu Dau Mot UniversityThủ Dầu Một CityVietnam

Personalised recommendations