Advertisement

Approximate Solution to SEP Integral over Fluctuating Beckmann Fading

  • Supriya AggarwalEmail author
Article
  • 19 Downloads

Abstract

In this letter we derive a generalized approximate closed-form solution for the symbol error probability (SEP) of modulation schemes over recently introduced Fluctuating Beckmann (FB) fading model. The noticeable fact about FB fading is that it covers all the important fading models like Gaussian, Rayleigh, Rician, Nakagami-m, \(\eta -\mu\), \(\kappa -\mu\), shadowed Rician and \(\kappa -\mu\) distributions as special cases. The exponential-based approximations to the Gaussian-Q function are used to derive approximate yet accurate solution to the SEP integral. This solution is expressed only in terms of power functions and is therefore mathematically simple.

Keywords

AWGN Symbol error probability Digital modulation Gaussian Q function Fading 

Notes

References

  1. 1.
    Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.Google Scholar
  2. 2.
    Proakis, J. G., & Salehi, M. (2014). Digital communication (5th ed.). New York: McGraw-Hill.zbMATHGoogle Scholar
  3. 3.
    Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. 4.
    Yacoub, M. D. (2007). The \(\kappa -\mu\) distribution and the \(\eta -\mu\) distribution. IEEE Antennas and Propagation Magazine, 49(1), 68–81.CrossRefGoogle Scholar
  5. 5.
    Ramirez-Espinosa, P., Lopez-Martinez, F. J., Paris, J. F., Yacoub, M. D., & Martos-Naya, E. (2018). An extension of the \(\kappa\)-\(\mu\) shadowed fading model: Statistical characterization and applications. IEEE Transactions on Vehicular Technology, 67(5), 3826–3837.CrossRefGoogle Scholar
  6. 6.
    Paris, J. F. (2014). Statistical characterization of \(\kappa -\mu\) Shadowed fading. IEEE Transactions on Vehicular Technology, 63(2), 518–526.CrossRefGoogle Scholar
  7. 7.
    Beckmann, P. (1962). Statistical distribution of the amplitude and phase of a multiply scattered field. Journal of Research of the National Bureau of Standards-D. Radio Propagation, 66D(3), 231–240.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Aggarwal, S. (2019). A survey-cum-tutorial on approximations to Gaussian Q function for symbol error probability analysis over Nakagami- fading channels. IEEE Communications: Surveys and Tutorials, 21(3), 2195–2223.Google Scholar
  9. 9.
    Craig, J. W. (1991). A new simple and exact result for calculating the probability of error for two-dimensional signal constellations. In Proceedings of IEEE Military communications conference, pp. 25.5.1–25.5.5.Google Scholar
  10. 10.
    Chiani, M., Dardari, D., & Simon, M. K. (2003). New exponential bounds and approximations for the computation of error probability in fading channels. IEEE Transactions on Wireless Communications, 2(4), 840–845.CrossRefGoogle Scholar
  11. 11.
    Sadhwani, D., Yadav, R. N., & Aggarwal, S. (2017). Tighter bounds on the Gaussian Q function and its application in Nakagami-m fading channel. IEEE Wireless Communications Letters, 6(5), 574–577.CrossRefGoogle Scholar
  12. 12.
    Loskot, P., & Beaulieu, N. C. (2009). Prony and polynomial approximations for evaluation of the average probability of error over slow-fading channels. IEEE Transactions on Vehicular Technology, 58(3), 1269–1280.CrossRefGoogle Scholar
  13. 13.
    Olabiyi, O., & Annamalai, A. (2012). Invertible exponential-type approximations for the Gaussian probability integral Q(x) with applications. IEEE Wireless Communications Letters, 1(5), 544–547.CrossRefGoogle Scholar
  14. 14.
    Karagiannidis, G. K., & Lioumpas, A. S. (2007). An improved approximation for the Gaussian Q-function. IEEE Communications Letters, 11(8), 644–646.CrossRefGoogle Scholar
  15. 15.
    Suraweera, H. A., & Armstrong, J. (2007). A simple and accurate approximation to the SEP of rectangular QAM in arbitrary Nakagami-m fading channels. IEEE Communications Letters, 11(5), 426–428.CrossRefGoogle Scholar
  16. 16.
    Sadhwani, D., & Yadav, R. N. (2017). A simplified exact expression of SEP for cross QAM in AWGN channel from MXN rectangular QAM and its usefulness in Nakagami-\(m\) fading channel. International Journal of Electronics and Communications (AEU) Elsevier, 74, 63–74.CrossRefGoogle Scholar
  17. 17.
    Rugini, L. (2016). Symbol error probability of Hexagonal QAM. IEEE Communications Letters, 20(8), 1523–1526.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringMANITBhopalIndia

Personalised recommendations