Advertisement

Cryptanalysis and Improvement of Batch Verification Certificateless Signature Scheme for VANETs

  • Jiguo LiEmail author
  • Yichen Zhang
Article
  • 12 Downloads

Abstract

Vehicular ad hoc networks (VANETs) has been paid more and more attention by the researchers and industry. Recently, Bayat et al. proposed a secure authentication scheme of VANETs with batch verification. Based on the computational Diffie–Hellman (CDH) assumption, they claimed that their scheme was secure. Unfortunately, we find that the scheme presented by Bayat et al. is insecure in their security model. It cannot resist the adversary attack so that a malicious vehicle can forge arbitrarily legal vehicle’s signature on any message. We give a concrete attack process. Furthermore, we provide a batch verification certificateless signature scheme for VANETs. Based on the CDH assumption, we prove that the presented scheme is secure against adaptively chosen message attack in the random oracle model. The performance analysis shows that our scheme is more suitable for realistic applications.

Keywords

Cryptanalysis Certificateless signature Batch verification Vehicular ad hoc networks 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (U1736112, 61772009, 61972095), Jiangsu Provincial Natural Science Foundation of China (BK20161511), Jiangsu Key Laboratory of Big Data Security and Intelligent Processing, NJUPT.

References

  1. 1.
    Wang, F. Y., Zeng, D., & Yang, L. (2006). Smart cars on smart roads: An IEEE intelligent transportation systems society update. IEEE Pervasive Computing,5(4), 68–69.CrossRefGoogle Scholar
  2. 2.
    Lee, U., Zhou, B., Gerla, M., & Magistretti, E. (2006). Mobeyes: Smart mobs for urban monitoring with a vehicular sensor network. IEEE Wireless Communications,13(5), 52–57.CrossRefGoogle Scholar
  3. 3.
    Misener, J. A. (2005). Vehicle-infrastructure integration (VII) and satety: Rubber and radio meets the road in california. Intellimotion,11(2), 1–3.MathSciNetGoogle Scholar
  4. 4.
    Zhang, Y., Liu, W., Lou, W., & Fang, Y. (2006). Securing mobile ad hoc networks with certificateless public keys. IEEE Transactions on Dependable and Secure Computing,3(4), 386–399.CrossRefGoogle Scholar
  5. 5.
    Zhang, C., Lu, R., Lin, X., Ho, P.-H., & Shen, X. (2008). An efficient identity-based batch verification scheme for vehicular sensor networks. In: The 27th IEEE communications society conference on computer communications (INFOCOM 2008) (pp. 816–824).Google Scholar
  6. 6.
    Huang, J.-L., Yeh, L.-Y., & Chien, H.-Y. (2011). ABAKA: An anonymous batch authenticated and key agreement scheme for value-added services in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology,60(1), 248–262.CrossRefGoogle Scholar
  7. 7.
    Chim, T. W., Yiu, S.-M., Hui, L. C., & Li, V. O. (2011). SPECS: Secure and privacy enhancing communications schemes for VANETs. Ad Hoc Networks,9(2), 189–203.CrossRefGoogle Scholar
  8. 8.
    Wang, H., & Zhang, Y. (2012). On the security of an anonymous batch authenticated and key agreement scheme for value-added services in VANETs. Procedia Engineering,29, 1735–1739.CrossRefGoogle Scholar
  9. 9.
    Zhang, C., Ho, P.-H., & Tapolcai, J. (2011). On batch verification with group testing for vehicular communications. Wireless Networks,17(8), 1851–1865.CrossRefGoogle Scholar
  10. 10.
    Lee, C. C., & Lai, Y. M. (2013). Toward a secure batch verification with group testing for VANET. Wireless Networks,19(6), 1441–1449.CrossRefGoogle Scholar
  11. 11.
    Zhang, J., Xu, M., & Liu, L. (2014). On the security of a secure batch verification with group testing for VANET. International Journal of Network Security,16(5), 355–362.Google Scholar
  12. 12.
    Bayat, M., Barmshoory, M., Rahimi, M., & Aref, M. R. (2015). A secure authentication scheme for VANETs with batch verification. Wireless Networks,21(5), 1733–1743.CrossRefGoogle Scholar
  13. 13.
    Al-Riyami, S. S., & Paterson, K. G. (2003). Certificateless public key cryptography. In Advances in cryptology-ASIACRYPT 2003 (pp. 452–473). Berlin: Springer.Google Scholar
  14. 14.
    Shamir, A. (1984). A identity-based cryptosystems and signature schemes. In Advances in cryptology-Crypto’84 (pp. 47–53). Berlin: Springer.Google Scholar
  15. 15.
    Tso, R., Yi, X., & Huang, X. (2011). Efficient and short certificateless signatures secure against realistic adversaries. The Journal of Supercomputing,55(2), 173–191.CrossRefGoogle Scholar
  16. 16.
    Choi, K. Y., Park, J. H., & Lee, D. H. (2011). A new provably secure certificateless short signature scheme. Computers & Mathematics with Applications,61(7), 1760–1768.MathSciNetCrossRefGoogle Scholar
  17. 17.
    He, D., Chen, J., & Zhang, R. (2012). An efficient and provably-secure certificateless signature scheme without bilinear pairings. International Journal of Communication Systems,25(11), 1432–1442.CrossRefGoogle Scholar
  18. 18.
    Li, Jiguo, Zhao, Jingjing, & Zhang, Yichen. (2015). Certificateless online/offline signcryption scheme. Security and Communication Networks,8(11), 1979–1990.CrossRefGoogle Scholar
  19. 19.
    He, D., Chen, Y., & Chen, J. (2013). An efficient certificateless proxy signature scheme without pairing. Mathematical and Computer Modelling,57(9–10), 2510–2518.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Yang, Lu, & Li, Jiguo. (2016). Provably secure certificateless proxy signature scheme in the standard model. Theoretical Computer Science,639, 42–59.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Yu, Y. T., Mu, Y., Wang, G., Xia, Q., & Yang, B. (2012). Improved certificateless signature scheme provably secure in the standard model. IET Information Security,6(2), 102–110.CrossRefGoogle Scholar
  22. 22.
    Li, J., Huang, X., Mu, Y., & Wu, W. (2008). Cryptanalysis and improvement of an efficient certificateless signature scheme. Journal of Communications and Networks,10(10), 10–17.CrossRefGoogle Scholar
  23. 23.
    He, D., Chen, J., & Hu, J. (2012). A pairing-free certificateless authenticated key agreement protocol. International Journal of Communication Systems,25(2), 221–230.CrossRefGoogle Scholar
  24. 24.
    He, D., Huang, B., & Chen, J. (2013). New certificateless short signature scheme. IET Information Security,7(2), 113–117.CrossRefGoogle Scholar
  25. 25.
    Li, Jiguo, Li, Yanqiong, & Zhang, Yichen. (2013). Provably secure forward secure certificateless proxy signature scheme. KSII Transactions on Internet and Information Systems,7(8), 1972–1988.CrossRefGoogle Scholar
  26. 26.
    Li, J., Li, Y., & Zhang, Y. (2013). Forward secure certificateless proxy signature scheme. In J. Lopez, X. Huang, & R. Sandhu (Eds.), NSS 2013, LNCS (Vol. 7873, pp. 350–364).Google Scholar
  27. 27.
    Yang, Lu, Quanling, Zhang, & Jiguo, Li. (2015). An improved certificateless strong key-insulated signature scheme in the standard model. Advances in Mathematics of Communications,9(3), 353–373.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Boneh, D., & Franklin, M. (2001). Identity-based encryption from the Weil pairing. In Advances in cryptologyCRYPTO 2001 (pp. 213–229). Berlin; Springer.Google Scholar
  29. 29.
    Pointcheval, D., & Stern, J. (1996). Security proofs for signature schemes. In Advances in cryptologyEUROCRYPT’96 (pp. 387–398). Berlin; Springer.Google Scholar
  30. 30.
    Shim, K.-A. (2012). An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks. IEEE Transactions on Vehicular Technology,61(4), 1874–1883.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Mathematics and InformaticsFujian Normal UniversityFuzhouChina
  2. 2.State Key Laboratory of CryptologyBeijingChina

Personalised recommendations