Hybrid Cloud Resource Provisioning (HCRP) Algorithm for Optimal Resource Allocation Using MKFCM and Bat Algorithm

  • S. KalaiselviEmail author
  • C. S. Kanimozhi Selvi


The basic purpose of resource allocation is to make the most efficient allocation of available resources. It contains resources and the number of tasks. The proposed methodology has two types there are resource discovery and resource allocation. The Multiple Kernel Fuzzy C Means Clustering Algorithm (MKFCM) is utilized for resource discovery process. Depends on the MKFCM algorithm the recommended method is group the available resources. Thereafter the resources are allocated with the help of a hybrid optimization technique. Here, resource provisioning algorithm is hybrid with bat algorithm for hybridization approach. The experimental analysis of the proposed mechanism is evaluated based on cost value, memory utilization and time. The prospective strategies have been experimented using the Cloud simulator with Java as the working platform.


Resource discovery Resource allocation Multiple Kernel Fuzzy C Means Clustering Cloud resource provisioning Bat algorithm 



  1. 1.
    Lu, D., & Ma, J. (2015). A universal fairness evaluation framework for resource allocation in cloud computing. China Communications,12(5), 113–122.CrossRefGoogle Scholar
  2. 2.
    Papagianni, C., & Leivadeas, A. (2013). On the optimal allocation of virtual resources in cloud computing networks. IEEE Transaction on Computers,62(6), 1060–1071.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Nan, G., & Mao, Z. (2014). Distributed resource allocation in cloud-based wireless multimedia social networks. IEEE Journal of Network,28(4), 74–80.CrossRefGoogle Scholar
  4. 4.
    Alasaad, A., & Shafiee, K. (2015). Innovative schemes for resource allocation in the cloud for media streaming applications. IEEE Journal of Parallel and Distributed System,26(4), 1021–1033.CrossRefGoogle Scholar
  5. 5.
    Sharkh, M. A., & Jammal, M. (2013). Resource allocation in a network-based cloud computing environment: Design challenges. IEEE Communications Magazine,51(11), 46–52.CrossRefGoogle Scholar
  6. 6.
    Di, S., & Wang, C.-L. (2013). Error-tolerant resource allocation and payment minimization for cloud system. IEEE Transactions on Parallel and Distributed Systems,24(6), 1097–1106.CrossRefGoogle Scholar
  7. 7.
    Di, S., & Wang, C.-L. (2013). Dynamic optimization of multi attribute resource allocation in self-organizing clouds. IEEE Transaction on Parallel and Distributed Systems,24(3), 464–478.CrossRefGoogle Scholar
  8. 8.
    Warneke, D., & Kao, O. (2011). Exploiting dynamic resource allocation for efficient parallel data processing in the cloud. IEEE Transactions on Parallel and Distributed Systems,22(6), 985–997.CrossRefGoogle Scholar
  9. 9.
    Helda Mercy, M., Anand, C., & Suganya, T. S. (2011). Resource overbooking: Using aggregation profiling in large scale resource discovery. International Journal of Engineering Trends and Technology, 52–54.Google Scholar
  10. 10.
    Mashayekhy, L., & Nejad, M. M. (2015). A PTAS mechanism for provisioning and allocation of heterogeneous cloud resources. IEEE Transactions on Parallel and Distributed Systems,26(9), 1–14.CrossRefGoogle Scholar
  11. 11.
    Liang, H., & Cai, L. X. (2012). An SMDP-based service model for inter domain resource allocation in mobile cloud networks. IEEE Transactions on Vehicular Technology,61(5), 2222–2232.CrossRefGoogle Scholar
  12. 12.
    Morshedlou, H., & Meybodi, M. R. (2014). Decreasing impact of SLA violations: A proactive resource allocation approach for cloud computing environments. IEEE Transactions on Cloud Computing,2(2), 156–167.CrossRefGoogle Scholar
  13. 13.
    Xiao, Z., & Song, W. (2013). Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Transaction on Parallel and Distributed (TPDS),24(6), 1107–1117.CrossRefGoogle Scholar
  14. 14.
    Di, S., & Kondo, D. (2015). Optimization of composite cloud service processing with virtual machines. IEEE Transactions on Computers,64(6), 1755–1768.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Abrishami, S., & Naghibzadeh, M. (2012). Deadline-constrained workflow scheduling in software as a service cloud. Scientia Iranica,19(3), 680–689.CrossRefGoogle Scholar
  16. 16.
    Guo, L., Zhao, S., Shen, S., & Jiang, C. (2012). Task scheduling optimization in cloud computing based on heuristic algorithm. Journal of Networks,7(3), 547.CrossRefGoogle Scholar
  17. 17.
    Kumar, P., & Anand, S. (2013). An approach to optimize workflow scheduling for cloud computing environment. Journal of Theoretical and Applied Information Technology, 57(3).Google Scholar
  18. 18.
    Zuo, X., Zhang, G., & Tan, W. (2014). Self-adaptive learning PSO-based deadline constrained task scheduling for hybrid IaaS cloud. IEEE Transactions on Automation Science and Engineering,11(2), 564–573.CrossRefGoogle Scholar
  19. 19.
    Agarwal, A., & Jain, S. (2014). Efficient optimal algorithm of task scheduling in cloud computing environment. International Journal of Computer Trends and Technology (IJCTT), 9(7).Google Scholar
  20. 20.
    Patra, P. K., Singh, H., & Singh, G. (2013). Fault tolerance techniques and comparative implementation in cloud computing. International Journal of Computer Applications,64(14), 37–41.CrossRefGoogle Scholar
  21. 21.
    Wan, J., & Zou, C. (2013). Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Journal of Network,27(5), 56–61.CrossRefGoogle Scholar
  22. 22.
    Mandal, U., & Habib, M. F. (2013). Greening the cloud using renewable-energy-aware service migration. IEEE Network,27(6), 36–43.CrossRefGoogle Scholar
  23. 23.
    Venu, N., & Anuradha, B. (2013). A novel multiple-kernel based fuzzy c-means algorithm with spatial information for medical image segmentation. International Journal of Image Processing (IJIP),7(3), 286.Google Scholar
  24. 24.
    Poobalan, A., & Selvi, V. (2013). Optimization of cost in cloud computing using OCRP algorithm. International Journal of Engineering Trends and Technology,4(5), 2105–2107.Google Scholar
  25. 25.
    Yang, X.-S. (2013). Bat algorithm: Literature review and applications. International Journal of Bio-Inspired Computation, 5(3).Google Scholar
  26. 26.
    Saraswathi, A. T., Kalaashri, Y. R., & Padmavathi, S. (2015). Dynamic resource allocation scheme in cloud computing. Procedia Computer Science,47, 30–36.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer TechnologyKongu Engineering CollegeErodeIndia
  2. 2.Department of Computer Science and EngineeringKongu Engineering CollegeErodeIndia

Personalised recommendations