Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Low-Voltage Flipped Voltage Follower Cell Based Current Mirrors for High Frequency Applications

  • 30 Accesses

Abstract

The paper proposes low-voltage current mirrors namely low-voltage current mirror (LVCM) and flipped voltage follower based low-voltage current mirror (FVFLVCM) with high bandwidth. The stability of the proposed circuits has been performed by time-domain approach and frequency domain approach using Routh–Hurwitz stability criteria and phase margin calculations, respectively. The bandwidth of the proposed FVFLVCM has also been enhanced using resistive compensation technique. The proposed LVCM and FVFLVCM have wide input current range of 0–100 µA and 0–150 µA, low DC error of 5.9% and 4.9%, low DC power dissipation of 110.39 µW and 99 µW, high bandwidth of 367 MHz and 624 MHz, low input impedance of 16.3 KΩ and 12.3 KΩ, low THD of 0.26% and 1% and low output noise of 2.25 nA and 2.83 nA over 100 MHz, respectively. The results have been simulated using SPICE in the TSMC 0.18 µm CMOS technology and are presented to validate the effectiveness of the proposed current mirrors.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Filanovsky, I. M. (2002). Current mirrors with limiting of linear dynamic range. In Proceedings of the Midwest symposium on circuits and systems (MWSCAS-2002). University of Alberta, Edmonton, Alberta, Canada, pp. 61–64.

  2. 2.

    Maloberti, F. (1998). Analog design for CMOS VLSI systems. New York: Kluwer Academic/Plenum Press.

  3. 3.

    Ismail, M., & Fiez, T. (1994). Analog VLSI signal and information processing. New York: McGraw-Hill.

  4. 4.

    Baker, J. R., Harry, W., & Boyce, E. (2005). CMOS circuit design, layout and simulation. New York: Wiley.

  5. 5.

    Razavi, B. (2005). Design of analog CMOS integrated circuits. New York: Tata McGraw-Hill.

  6. 6.

    Sharma, S., Rajput, S. S., Mangotra, L. K., & Jamuar, S. S. (2002). FGMOS based wide range low voltage current mirror and its applications. In Proceedings of IEEE Asia-Pacific conference on circuits and systems, Indonesia (pp. 331–334).

  7. 7.

    Zeki, A., & Kuntman, H. (1997). Accurate and high output impedance current mirrors suitable for CMOS current output stages. Electronics Letters,33(12), 1042–1043.

  8. 8.

    Mulder, J., Woerd, A. C., Serdijn, W. A., & Roermund, A. H. M. (1996). High swing cascode MOS current mirror. Electronic Letters,32, 1251–1252.

  9. 9.

    Yang, H. C., & Allistot, D. J. (1990). An active feedback cascode current source. IEEE Transactions on Circuits and Systems,37(5), 644–646.

  10. 10.

    Allen, P. E., & Holberg, D. R. (2002). CMOS analog circuit design. New York: Oxford University Press.

  11. 11.

    Carvajal, R. G., Ramirez-Angulo, J., Lopez-Martin, A. J., Torralba, A., GomezGalan, J. A., Carlosena, A., et al. (2005). The flipped voltage follower: A useful cell for low-voltage low-power circuit design. IEEE Transaction on Circuits and Systems-I,52(7), 1276–1291.

  12. 12.

    Peluso, V., Vancoreland, P., Steyaert, M., & Sansen, W. (1997). A 900 mV differential class-AB OTA for switched Op-Amp applications. Electronics Letters,33(17), 1455–1456.

  13. 13.

    You, F., Embabi, S. H. K., & Sánchez-Sinencio, E. (1998). Low-voltage class-AB buffers with quiescent current control. IEEE Journal of Solid-State Circuits,33(6), 915–920.

  14. 14.

    Ramírez-Angulo, J., Carvajal, R. G., Torralba, A., & Nieva, C. (2001). A new class-AB differential input stage for implementation of low voltage high slew rate Op-Amps and linear transconductors. In Proceedings of IEEE international symposium circuits and systems (ISCAS 2001), Sydney, Australia (pp. 671–674).

  15. 15.

    Ramírez-Angulo, J., Carvajal, R. G., & Torralba, A. (2004). Low supply voltage high-performance CMOS current mirror with low input and output voltage requirements. IEEE Transactions on Circuits and Systems II: Express Briefs,51(3), 124–129.

  16. 16.

    Torralba, A., Carvajal, R. G., Ramirez-Angulo, J., & Munoz, F. (2002). Output stage for low supply voltage, high-performance CMOS current mirrors. Electronics Letters,38(24), 1528–1529.

  17. 17.

    Ducoudray, G. O., González-Carvajal, R., & Ramírez-Angulo, J. (2003). A high-speed dynamic current sensor scheme for IDD test using a flipped voltage follower. In Proceedings of Southwest symposium on mixed-signal design (SSMSD-2003), Las Vegas, NV, USA (pp. 50–53).

  18. 18.

    Rajput, S. S., & Jamuar, S. S. (2000). A high performance current mirror for low voltage designs. In Proceedings of APCCAS/IEEE, Tianjin, China (pp. 170–173).

  19. 19.

    Rajput, S. S., & Jamuar, S. S. (2001). Low voltage, low power, high performance current mirror for portable analogue and mixed mode applications. IEE Proceedings-Circuits Devices Systems,148(5), 273–278.

  20. 20.

    Koliopoulos, C., & Psychalinos, C. (2007). A comparative study of the performance of the flipped voltage follower based low-voltage current mirrors. In Proceedings of international symposium on signals, circuits and systems, Lasi (pp. 1–4).

  21. 21.

    Johns, D., & Martin, K. (1997). Analog integrated circuit design. New York: Wiley.

  22. 22.

    Baghtash, H. F., & Azhari, S. J. (2011). Very low input impedance low power current mirror. Analog Integrated Circuits and Signal Processing,66(1), 9–18.

  23. 23.

    Tikyani, M., & Pandey, R. (2011). A new low-voltage current mirror circuit with enhanced bandwidth. In Proceedings of international conference on computational intelligence and communication networks, Gwalior, India (pp. 42–46).

  24. 24.

    Sooksood, K. (2016). Wide current range and high compliance-voltage bulk-driven current mirrors: Simple and cascode. In Proceedings of IEEE Asia Pacific conference on circuits and systems (APCCAS), Jeju, South Korea.

  25. 25.

    Voo, T., & Toumazou, C. (1995). High-speed current mirror resistive compensation technique. Electronics Letters,31(4), 248–250.

  26. 26.

    Olgac, N., & Sipahi, R. (2002). An exact method for the stability analysis of time-delayed linear time-invariant (LTI) systems. IEEE Transaction on Automatic Control,47(5), 793–797.

Download references

Author information

Correspondence to Rishikesh Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, A., Pandey, R. & Jindal, C. Low-Voltage Flipped Voltage Follower Cell Based Current Mirrors for High Frequency Applications. Wireless Pers Commun 111, 143–161 (2020). https://doi.org/10.1007/s11277-019-06849-2

Download citation

Keywords

  • Flipped voltage follower
  • Low-voltage
  • Bandwidth
  • Stability
  • Current mirror