Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Broadband Conformal Monopole Antenna Loaded with Meandered Arms for Wireless Capsule Endoscopy

  • 46 Accesses


In this paper, a new conformal monopole antenna is presented. The proposed antenna is suitable for using in wireless capsule endoscopy (WCE) as transmitter antenna because of its special structure. The WCE antenna should have particular features, because it will be radiate in human body environment. The WCE antennas specific requirements are: proper size, location, gain, radiation pattern and bandwidth in standard frequency band. The proposed antenna’s basic design is done according to the monopole antenna. Therefore, the antenna radiation pattern is omnidirectional. In order to achieve proper bandwidth the Babinet’s principle is applied to the monopole antenna. Also, the antenna is placed in the capsule’s dome. Finally, the antenna simulations are done with two High Frequency Electromagnetic Field Simulation and Computer Simulation Technology Microwave Studio software. The design results show that the antenna gain is − 30 dB and 89% bandwidth in Industrial, Scientific and Medical band. Therefore the proposed antenna will be an appropriate candidate for using in WCEs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


  1. 1.

    Iddan, G., Meron, G., Glukhovsky, A., & Swain, P. (2000). Wireless capsule endoscopy. Nature,405(6785), 417.

  2. 2.

    Tuyl, S. A. C. (2007). Videocapsule endoscopy: Fiction becoming fact. Rotterdam: Erasmus MC, University Medical Center.

  3. 3.

    Ye, Y. (2013). Bounds on RF cooperative localization for video capsule endoscopy. Doctoral dissertation, Worcester Polytechnic Institute.

  4. 4.

    Bao, Z., Guo, Y. X., & Mittra, R. (2017). An ultrawideband conformal capsule antenna with stable impedance matching. IEEE Transactions on Antennas and Propagation,65(10), 5086–5094.

  5. 5.

    Chandran, A. R., Morris, S., Raman, S., Timmons, N., & Morrison, J. (2017). Microstrip patch based switched beam antenna at 2.45 GHz for wireless sensor network applications. Journal of Electromagnetic Waves and Applications,31(13), 1333–1341.

  6. 6.

    Lim, E. G., Wang, J. C., Wang, Z., Juans, G., Tillo, T., Man, K. L., & Zhang, M. (2013). Wireless capsule antennas. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 2).

  7. 7.

    Ara, P., Heimlich, M., & Dutkiewicz, E. (2014). Antenna performance for localization of capsule endoscope. In 8th International symposium on medical information and communication technology (ISMICT) (pp. 1–5). IEEE.

  8. 8.

    Lee, S. H., Chang, K., Kim, K. J., & Yoon, Y. J. (2008). A conical spiral antenna for wideband capsule endoscope system. In Antennas and propagation society international symposium (pp. 1–4). IEEE.

  9. 9.

    Lee, S. H., Lee, J., Yoon, Y. J., Park, S., Cheon, C., Kim, K., et al. (2011). A wideband spiral antenna for ingestible capsule endoscope systems: Experimental results in a human phantom and a pig. IEEE Transactions on Biomedical Engineering,58(6), 1734–1741.

  10. 10.

    Atashpanjeh, E., & Pirhadi, A. (2015). Design of wideband monopole antenna loaded with small spiral for using in wireless capsule endoscopy systems. Progress in Electromagnetics Research C,59, 71–78.

  11. 11.

    Sharbati, V., Rezaei, P., Shahzadi, A., & Fakharian, M. M. (2016). A planar UWB antenna based on MB-OFDM applications with switchable dual band-notched for cognitive radio systems. International Journal of Microwave and Wireless Technologies,8(1), 95–102.

  12. 12.

    Cheng, X., Senior, D. E., Kim, C., & Yoon, Y. K. (2011). A compact omnidirectional self-packaged patch antenna with complementary split-ring resonator loading for wireless endoscope applications. IEEE Antennas and Wireless Propagation Letters,10, 1532–1535.

  13. 13.

    Lee, S. H., Chang, K., & Yoon, Y. J. (2007). A dual spiral antenna for wideband capsule endoscope system. In Asia-Pacific microwave conference (pp. 1–4). IEEE.

  14. 14.

    il Kwak, S., Chang, K., & Yoon, Y. J. (2005). Ultra-wide band spiral shaped small antenna for the biomedical telemetry. In Microwave conference proceedings, Asia-Pacific conference proceedings (Vol. 1, p. 4). IEEE.

  15. 15.

    Fakharian, M. M., Rezaei, P., & Azadi, A. (2015). A planar UWB bat-shaped monopole antenna with dual band-notched for WiMAX/WLAN/DSRC. Wireless Personal Communications,81(2), 881–891.

  16. 16.

    Li, Y., Jiang, T., & Mittra, R. (2016). A miniaturized dual-band antenna with toothbrush-shaped patch and meander line for WLAN Applications. Wireless Personal Communications,91(2), 595–602.

  17. 17.

    Dianfei, P., Yanshan, B., & Naiping, C. (2015). Hemispherical coverage array antenna and performance analysis. Wireless Personal Communications,80(3), 1193–1201.

  18. 18.

    Baek, S. M., Ko, M. G., Kim, M. S., & Joo, Y. S. (2017). Structural design of conformal load-bearing array antenna structure (CLAAS). Advanced Composite Materials,26(sup1), 29–42.

  19. 19.

    Ouyang, J., Yang, F., Zhou, H., Nie, Z., & Zhao, Z. (2010). Conformal antenna optimization with space mapping. Journal of Electromagnetic Waves and Applications,24(2–3), 251–260.

  20. 20.

    Nasrabadi, E., & Rezaei, P. (2016). A novel design of reconfigurable monopole antenna with switchable triple band-rejection for UWB applications. International Journal of Microwave and Wireless Technologies,8(8), 1223–1229.

  21. 21.

    Ishimaru, A. (2017). Electromagnetic wave propagation, radiation, and scattering: From fundamentals to applications. New York: Wiley.

  22. 22.

    Gabriel, C., Gabriel, S., & Corthout, E. (1996). The dielectric properties of biological tissues: I. Literature survey. Physics in Medicine & Biology,41(11), 2231.

  23. 23.

    Masihi, S., Rezaei, P., & Panahi, M. (2017). Compact chip-resistor loaded active integrated patch antenna for ISM band applications. Wireless Personal Communications,97(4), 5733–5746.

  24. 24.

    Kiourti, A., & Nikita, K. S. (2012). A review of implantable patch antennas for biomedical telemetry: Challenges and solutions [wireless corner]. IEEE Antennas and Propagation Magazine,54(3), 210–228.

  25. 25.

    Rezaei, P., Hakkak, M., & Forooraghi, K. (2007). Effect of magnetic layer on the microstrip-excited rectangular dielectric resonator antennas bandwidth. Journal of Electromagnetic Waves and Applications,21(7), 915–927.

  26. 26.

    Yun, S., Kim, K., & Nam, S. (2010). Outer-wall loop antenna for ultrawideband capsule endoscope system. IEEE Antennas and Wireless Propagation Letters,9, 1135–1138.

  27. 27.

    Izdebski, P. M., Rajagopalan, H., & Rahmat-Samii, Y. (2009). Conformal ingestible capsule antenna: A novel chandelier meandered design. IEEE Transactions on Antennas and Propagation,57(4), 900–909.

  28. 28.

    Cheng, X., Wu, J., Blank, R., Senior, D. E., & Yoon, Y. K. (2012). An omnidirectional wrappable compact patch antenna for wireless endoscope applications. IEEE Antennas and Wireless Propagation Letters,11, 1667–1670.

Download references


This work was supported by Semnan University. The authors would like to thank Dr. A. Pirhadi for valuable comments.

Author information

Correspondence to P. Rezaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Atashpanjeh, E., Rezaei, P. Broadband Conformal Monopole Antenna Loaded with Meandered Arms for Wireless Capsule Endoscopy. Wireless Pers Commun 110, 1679–1691 (2020). https://doi.org/10.1007/s11277-019-06806-z

Download citation


  • Wireless capsule endoscopy
  • Conformal monopole antenna
  • Omnidirectional pattern
  • Standard frequency