Advertisement

Advances in Smart Antenna Systems for Wireless Communication

  • Veerendra DakulagiEmail author
  • Mohammed Bakhar
Article
  • 28 Downloads

Abstract

Wireless communication is one of the fastest growing fields of communication industry. Cellular phones have shown the drastic exponential growth from the last decade and this growth has reached about one billion mobile phone users worldwide. Certainly, mobile phones have become one of the most importants components of daily life and a critical business tool in all countries. Huge gap between a vision for future wireless communication systems and the current system’s performance represents that massive research work has to be carried out to make future communication system vision a reality. In this paper, all most all the types of beamforming and direction of arrival schemes for wireless communications have been presented. This paper also presents the comprehensive study of smart antenna systems, its advancement in recent years and futuristic scope.

Keywords

Array antenna Beamforming DOA ESPRIT Smart antenna Wireless communication 

Notes

References

  1. 1.
    Van Atta, L. Electromagnetic reflection. U.S. Patent 2908002, Oct. 6, 1959.Google Scholar
  2. 2.
    Gross, F. B. (2005). Smart antennas for wireless communications. Tata McGraw-Hill.Google Scholar
  3. 3.
    de Fuentesa, J. M., Manzanoa, L. G., Tablasa, A. I. G., & Blascoa, J. (2014). Security models in vehicular ad-hoc networks: A survey. IETE Technical Review, 31(1), 47–64.CrossRefGoogle Scholar
  4. 4.
    Howells, P. (1976). Explorations in fixed and adaptive resolution at GE and SURC. IEEE Transactions on Antenna and Propagation, Special Issue on Adaptive Antennas, AP-24(5), 575–584.CrossRefGoogle Scholar
  5. 5.
    Applebaum, S. (1966). Adaptive Arrays. Syracuse University Research Corporation, Rep. SPL TR66-1, August 1966.Google Scholar
  6. 6.
    Applebaum, S. (1976). Adaptive arrays. IEEE Transactions on Antenna and Propagation, AP-(5), 585–598.CrossRefGoogle Scholar
  7. 7.
    Widrow, B., & Hoff, M. (1960). Adaptive switch circuits, IREWescom, Convention Record, Part 4, pp. 96–104.Google Scholar
  8. 8.
    Widrow, B., Mantey, P., & Griffiths, L., et al. (1967). Adaptive antenna systems. In Proceedings of the IEEE (Vol. 55), Dec.Google Scholar
  9. 9.
    Dakulagi, V., & Bakhar, M. (2019). Smart antenna system for DOA estimation using single snapshot. Springer Wireless Personal Communications., 107(1), 81–93.  https://doi.org/10.1007/s11277-019-06241-0.CrossRefGoogle Scholar
  10. 10.
    Capon, J. (1969). High-resolution frequency-wave number spectrum analysis. Proceedings of IEEE, 57, 1408–1418.CrossRefGoogle Scholar
  11. 11.
    Sanudin, Noordin, N. H., El-Rayis, A. O., Haridas, N., Erdogan, A. T., & Arslan, T. (2011). Capon-like DOA estimation algorithm for directional antenna arrays. In IEEE 2011 Loughborough Antennas & Propagation Conference (pp. 1–4).Google Scholar
  12. 12.
    Li, J., Stoica, P., & Wang, Z. (2003). On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing, 51, 1702–1715.CrossRefGoogle Scholar
  13. 13.
    Li, J., Stoica, P., & Wang, Z. (2004). Doubly constrained robust capon beamformer. IEEE Transactions on Signal Processing, 52, 2407–2423.CrossRefGoogle Scholar
  14. 14.
    Lacoss, R. T. (1971). Data adaptive spectral analysis method. Geophysics, 36, 661–675.CrossRefGoogle Scholar
  15. 15.
    Bartlett, M. S. (1956). An introduction to stochastic process. New York: Cambridge University Press.Google Scholar
  16. 16.
    Pezeshki, A., Van Veen, B. D., Scharf, L. L., Cox, H., & Lundberg, M. (2008). Eigenvalue beamforming using a multi-rank MVDR beamformer and subspace selection. IEEE Transactions on Signal Processing, 56(5), 1954–1967.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Balasem, S. S., Tiong, S. K., & Koh, S. P. (2012). Beamforming algorithms technique by using MVDR and LCMV. World Applied Programming, 2(5), 315–324.Google Scholar
  18. 18.
    Wang, Y., Huang, L., & Shi, Y. (2015). Robust widely linear adaptive MVDR beamformer based on interference-plus-noise covariance matrix and steering vector estimation. In Proceedings of of IEEE China Summit and international conference on signal and information processing (ChinaSIP 2015), July 2015, Chengdu, China.Google Scholar
  19. 19.
    Xu, J., Liao, G., Zhu, S., & Huang, L. (2015). Response vector constrained robust LCMV beamforming via a semidefinite programming relaxation. IEEE Transactions on Signal Processing, 63(21), 5720–5732.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Schmidt, R. O. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.CrossRefGoogle Scholar
  21. 21.
    Swindlehurst, A. L., & Kailath, T. (1992). A performance analysis of subspace-based methods in the presence of model errors, part I: The MUSIC algorithm. IEEE Transactions on Signal Processing, 40, 1758–1774.zbMATHCrossRefGoogle Scholar
  22. 22.
    Friedlander, B., & Weiss, A. J. (1994). Effects of model errors on waveform estimation using the MUSIC algorithm. IEEE Transactions on Signal Processing, 42, 147–155.CrossRefGoogle Scholar
  23. 23.
    Ying, Z., & Ng, B. P. (2010). MUSIC-like DOA estimation without estimating the number of sources. IEEE Transactions on Signal Processing, 58, 1668–1676.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Bo, L. I. (2011). Estimation for signal’s DOA by MUSIC algorithm. Journal of Computational Information Systems, 7(15), 5461–5468.Google Scholar
  25. 25.
    Park, H. R., & Kim, Y. S. (1993). A solution to the narrow-band coherency problem in multiple source location. IEEE Transactions on Signal Processing, 41, 473–476.CrossRefGoogle Scholar
  26. 26.
    Zeng, W. J., So, H. C., & Huang, L. (2013). lp-MUSIC: Robust direction-of-arrival estimator for impulsive noise environments. IEEE Transactions on Signal Processing, 5(99), 4296–4308.zbMATHCrossRefGoogle Scholar
  27. 27.
    Becker, H., Chevalierand, P., & Haardt, M. (2014). High resolution direction finding from rectangular higher order cumulant matrices: The rectangular 2Q-MUSIC Algorithms. In Proceedings in international conference on acoustic, signal processing (pp. 2261–2265).Google Scholar
  28. 28.
    Dakulagi, V., Noubade, A., Agasgere, A., Doddi, P., & Fatima, K. (2019). Modified adaptive beamforming algorithms for 4G-LTE smart-phones. Springer Advances in Intelligent Systems and Computing, 898, 561–568.CrossRefGoogle Scholar
  29. 29.
    Qian, C., Huang, L., & So, H. C. (2014). Improved unitary Root-MUSIC for DOA estimation based on pseudo-noise resampling. IEEE Signal Processing Letters, 21(2), 140–144.CrossRefGoogle Scholar
  30. 30.
    Qian, C., Huang, L., Xiao, Y., & So, H. C. (2015). Two-step reliability test based unitary root-MUSIC for direction-of-arrival estimation. Elsevier Digital Signal Processing, 44, 68–75.CrossRefGoogle Scholar
  31. 31.
    Buckley, K. M., & Xu, X. L. (1990). Spatial spectrum estimation in a location sector. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-38, 1842–1852.CrossRefGoogle Scholar
  32. 32.
    Roy, R., & Kailath, T. (1989). ESPRIT—Estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-37, 984–995.zbMATHCrossRefGoogle Scholar
  33. 33.
    Huang, L., Wu, S., Feng, D., & Zhang, L. (2004). Low complexity method for signal subspace fitting. IEE Electronics Letters, 40(14), 847–848.CrossRefGoogle Scholar
  34. 34.
    Huang, L., Wu, S., & Zhang, L. (2005). Low-complexity ESPRIT method for direction finding. In Proceedings of IEEE international acoustics, speech, and signal processing, 2005 (ICASSP ‘05), Pennsylvania, PA, USA, March 18–23, 2005.Google Scholar
  35. 35.
    Huang, L., Feng, D., Wu, S., & Zhang, L. (2005). Computationally efficient method of signal subspace fitting for direction-of-arrival estimation. IEICE Transactions on Communications, 88, 3408–3415.CrossRefGoogle Scholar
  36. 36.
    Qian, C., Huang, L., & So, H. C. (2014). Computationally efficient ESPRIT algorithm for direction-of-arrival estimation based on Nyström method. Signal Processing, 94, 74–80.CrossRefGoogle Scholar
  37. 37.
    Choi, S., Sarkar, T. K., & Lee, S. S. (1993). Design of two dimensional Tseng window and its application to antenna array for the detection of AM signal in the presence of strong jammers in mobile communications. Signal Processing, 34, 297–310.zbMATHCrossRefGoogle Scholar
  38. 38.
    Chiba, I., Takahashi, T., & Karasawa, Y. (1994). Transmitting null beam forming with beam space adaptive array antennas. In Proceedings of IEEE 44th vehicular technology conference, Stockholm, Sweden (pp. 1498–1502).Google Scholar
  39. 39.
    Friedlander, B., & Porat, B. (1989). Performance analysis of a nullsteering algorithm based on direction-of-arrival estimation. IEEE Transaction on Acoustics, Speech and Signal Processing, 37, 461–466.CrossRefGoogle Scholar
  40. 40.
    Dakulagi, V., Bakhar, M., & Vani, R. M. (2016). Robust blind beam formers for smart antenna system using window techniques. Procedia Computer Science, 93, 713–720.CrossRefGoogle Scholar
  41. 41.
    Winters, J. H. (1984). Optimum combining in digital mobile radio with cochannel interference. IEEE Journal on Selected Areas in Communications, SAC-2, 528–539.CrossRefGoogle Scholar
  42. 42.
    Naguib, A. F., & Paulraj, A. (1994). Performance of CDMA cellular networks with base-station antenna arrays. In Proceedings of IEEE international Zurich seminar on communications (pp. 87–100).Google Scholar
  43. 43.
    Widrow, B., Mantey, P. E., Griffiths, L. J., & Goode, B. B. (1967). Adaptive antenna systems. Proceedings of the IEEE, 55, 2143–2158.CrossRefGoogle Scholar
  44. 44.
    Choi, S., & Sarkar, T. K. (1992). Adaptive antenna array utilizing the conjugate gradient method for multipath mobile communication. Signal Processing, 29, 319–333.CrossRefGoogle Scholar
  45. 45.
    Anderson, S., Millnert, M., Viberg, M., & Wahlberg, B. (1991). An adaptive array for mobile communication systems. IEEE Transactions on Vehicular Technology, 40, 230–236.CrossRefGoogle Scholar
  46. 46.
    Boonpoonga, A., Sirisuk, P., & Krairiksh, M. (2013). Efficient parallel architecture for implementation of the CMA adaptive antenna. IETE Technical Review, 30, 303–312.CrossRefGoogle Scholar
  47. 47.
    Tanaka, T., Miura, R., Chiba, I., & Karasawa, Y. (1995). An ASIC implementation scheme to realize a beam space CMA adaptive array antenna. IEICE Transactions on Communications, E78-B, 1467–1473.Google Scholar
  48. 48.
    Godara, L. C. (1987). A robust adaptive array processor. IEEE Transactions on Circuits and Systems, CAS-34, 721–730.CrossRefGoogle Scholar
  49. 49.
    Winters, J. H., Salz, J., & Gitlin, R. D. (1994). The impact of antenna diversity on the capacity of wireless communication systems. IEEE Transactions on Communications, 42, 1740–1751.CrossRefGoogle Scholar
  50. 50.
    Despins, C. L. B., Falconer, D. D., & Mahmoud, S. A. (1992). Compound strategies of coding, equalization and space diversity for wideband TDMA indoor wireless channels. IEEE Transactions on Vehicular Technology, 41, 369–379.CrossRefGoogle Scholar
  51. 51.
    Er, M. H., & Cantoni, A. (1986). An unconstrained partitioned realization for derivative constrained broadband antenna array processors. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-34, 1376–1379.Google Scholar
  52. 52.
    Shynk, J. J., & Gooch, R. P. (1985). Frequency-domain adaptive pole-zero filtering. Proceedings of IEEE, 73, 1526–1528.CrossRefGoogle Scholar
  53. 53.
    Youn, W. S., & Un, C. K. (1990). Eigenstructure method for robust array processing. Electronics Letters, 26, 678–680.CrossRefGoogle Scholar
  54. 54.
    Dakulagi, V., Bakhar, M., & Vani, R. M. (2016). Smart antennas for interference rejection in mobile communications. Journal of Mobile Applications and Technologies, 2(4), 11–18.Google Scholar
  55. 55.
    Nishimori, K., Kikuma, N., & Inagaki, N. (1995). The differencial CMA adaptive array antenna using an eigen-beamspace system. IEICE Transactions on Communications, E78-B, 1480–1488.Google Scholar
  56. 56.
    Friedlander, B. (1988). A signal subspace method for adaptive interference cancellation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36, 1835–1845.zbMATHCrossRefGoogle Scholar
  57. 57.
    Pridham, R. G., & Mucci, R. A. (1978). A novel approach to digital beamforming. The Journal of the Acoustical Society of America, 63, 425–434.CrossRefGoogle Scholar
  58. 58.
    Sylva, P. D., Menard, P., & Roy, D. (1986). A reconfigurable realtime interpolation beamformer. IEEE Journal of Oceanic Engineering, OE-11, 123–126.CrossRefGoogle Scholar
  59. 59.
    Pridham, R. G., & Mucci, R. A. (1979). Digital interpolation beamforming for low-pass and bandpass signals. Proceedings of IEEE, 67, 904–919.CrossRefGoogle Scholar
  60. 60.
    Maranda, B. (1989). Efficient digital beamforming in the frequency domain. The Journal of the Acoustical Society of America, 86, 1813–1819.CrossRefGoogle Scholar
  61. 61.
    Fan, H., El-Masry, E. I., & Jenkins, W. K. (1984). Resolution enhancement of digital beamforming. IEEE Transactions on Acoustics, Speech, and Signal Processing, 32, 1041–1052.CrossRefGoogle Scholar
  62. 62.
    Papoulis, A. (1975). A new algorithm in spectral analysis and bandlimited extrapolation. IEEE Transactions on Circuits and Systems, CAS-22, 735–742.MathSciNetCrossRefGoogle Scholar
  63. 63.
    Gebauer, T., & Gockler, H. G. (1995). Channel-individual adaptive beamforming for mobile satellite communications. IEEE Journal on Selected Areas in Communications, 13, 439–448.CrossRefGoogle Scholar
  64. 64.
    Curtis, T. (1980). Digital beamforming for sonar systems. In Proceedings of IEE Pt. F (Vol. 127, pp. 257–265).Google Scholar
  65. 65.
    Barton, P. (1980). Digital beamforming for radar. In IEE Proceedings on Pt. F (Vol. 127, pp. 266–277).Google Scholar
  66. 66.
    Skolnik, M. (2001). Introduction to radar systems (3rd ed.). New York: McGraw-Hill.Google Scholar
  67. 67.
    Skolnik, M. (2002). System aspects of digital beam forming ubiquitous radar. Naval Research Lab, Report No. NRL/MR/5007—02- June 28, 2002.Google Scholar
  68. 68.
    Dakulagi, V., & Bakhar, M. (2017). Smart antennas for cognitive radio networks. Journal on Communication Engineering and Systems, 6(1), 22–27.Google Scholar
  69. 69.
    Ko, C. C. (1993). A fast adaptive null-steering algorithm based on output power measurements. IEEE Transactions on Aerospace and Electronic Systems, 29, 717–725.CrossRefGoogle Scholar
  70. 70.
    Ko, C. C., Balabshaskar, G., & Bachl, R. (1993). Unbiased source estimation with an adaptive null steering algorithm. Signal Processing, 31, 283–300.zbMATHCrossRefGoogle Scholar
  71. 71.
    Dentino, M., McCool, J., & Widrow, B. (1978). Adaptive filtering in frequency domain. Proceedings of IEEE, 66, 1658–1659.CrossRefGoogle Scholar
  72. 72.
    Dakulagi, V., Bakhar, M., & Vani, R. M. (2015). Subspace based direction of arrival estimation using no snapshot criteria for mobile communications. The IUP Journal of Telecommunications VI, I(3), 29–37.Google Scholar
  73. 73.
    Chen, R. Y., & Wang, C. L. (1990). On the optimum step size for the adaptive sign and LMS algorithms. IEEE Transactions on Circuits and Systems, 37, 836–840.CrossRefGoogle Scholar
  74. 74.
    Winters, J. H. (1987). Optimum combining for indoor radio systems with multiple users. IEEE Transactions on Communications, COM-35, 1222–1230.CrossRefGoogle Scholar
  75. 75.
    Mathews, V. J., & Cho, S. H. (1987). Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-35, 450–454.zbMATHCrossRefGoogle Scholar
  76. 76.
    Dakulagi, V., & Bakhar, M. (2017). Smart antenna system for DOA estimation using 2D-ULA. Indian Journal of Scientific Research, 13(1), 241–244. ISSN: 0976-2876.Google Scholar
  77. 77.
    Slock, D. T. M. (1993). On the convergence behavior of the LMS and the normalized LMS algorithms. IEEE Transactions on Signal Processing, 41, 2811–2825.zbMATHCrossRefGoogle Scholar
  78. 78.
    Rupp, M. (1993). The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes. IEEE Transactions on Signal Processing, 41, 1149–1160.zbMATHCrossRefGoogle Scholar
  79. 79.
    Barrett, M., & Arnott, R. (1994). Adaptive antennas for mobile communications. Electronics & Communication Engineering Journal, 6, 203–214.CrossRefGoogle Scholar
  80. 80.
    So, H. C., & Chan, Y. T. (2003). Analysis of an LMS algorithm for unbiased impulse response estimation. IEEE Transactions on Signal Processing, 51(7), 1–6.MathSciNetCrossRefGoogle Scholar
  81. 81.
    Srar, A., & Kah-Seng, C. (2009). Adaptive RLMS algorithm for antenna array beamforming. In Proceedings of IEEE Region 10 conference TENCON (pp. 1–6).Google Scholar
  82. 82.
    Rana, M. M. (2011). Performance comparison of LMS and RLS channel estimation algorithms for 40 MIMO OFDM systems. In Proceedings of IEEE international conference on computer and information technology, December.Google Scholar
  83. 83.
    Ali, R. L. (2012). A robust least mean square algorithm for adaptive array signal processing. Wireless Personal Communications, 68(4), 1449–1461.CrossRefGoogle Scholar
  84. 84.
    Motiur Rahaman, D. M., Hossain, M. M., & Rana, M. M. (2013). Least mean square (LMS) for smart antenna. Universal Journal of Communications and Network, 1(1), 16–21.Google Scholar
  85. 85.
    Shubair, R. M., & Hakam, A. (2013). Adaptive beamforming using variable step-size LMS algorithm with novel ULA array configuration. In Proceedings of IEEE ICCT (pp. 650–654).Google Scholar
  86. 86.
    Dungriyal, K., Anand, S., & Sriram Kumar, D. (2014). Performance of MIR-LMS algorithm for adaptive beam forming in smart antenna. In Proceedings of IRF international conference, Chennai, India, 20th Apr 2014.Google Scholar
  87. 87.
    Taheri, O., & Vorobyov, S. A. (2014). Reweighted l1-norm penalized LMS for sparse channel estimation and its analysis. Elsevier Signal Processing, 104, 70–79.CrossRefGoogle Scholar
  88. 88.
    Shi, Y., Huang, L., Qian, C., & So, H. C. (2015). Shrinkage linear and widely-linear complex-valued least mean squares algorithms for adaptive beamforming. IEEE Transactions on Signal Processing, 61(1), 119–131.MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Litva, J., & Lo, T. K.-Y. (1996). Digital beamforming in wireless communications. Norwood: Artech House.Google Scholar
  90. 90.
    Diouris, J. F., Feuvrie, B., & Saillard, J. (1993). Adaptive multisensory receiver for mobile communications. Annals of Telecommunications, 48, 35–46.Google Scholar
  91. 91.
    Lindskog, E. (1995). Making SMI-beamforming insensitive to the sampling timing for GSM signals. In Proceedings of IEEE international symposium on personal, indoor and mobile radio communications, Toronto, Canada (pp. 664–668).Google Scholar
  92. 92.
    Vaughan, R. G. (1988). On optimum combining at the mobile. IEEE Transactions on Vehicular Technology, 37, 181–188.CrossRefGoogle Scholar
  93. 93.
    Dakulagi, V., & Bakhar, M. (2017). Efficient blind beamforming algorithms for phased array and MIMO RADAR. IETE Journal of Research.  https://doi.org/10.1080/03772063.2017.1351319.CrossRefGoogle Scholar
  94. 94.
    Slock, D. T. M., & Kailath, T. (1991). Numerically stable fast transversal filters for recursive least squares adaptive filtering. IEEE Transactions on Signal Processing, 39, 92–114.zbMATHCrossRefGoogle Scholar
  95. 95.
    Gardner, W. A., & Brown, W. A., III. (1987). A new algorithm for adaptive arrays. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-35, 1314–1319.CrossRefGoogle Scholar
  96. 96.
    Dakulagi, V. (2018). Compact multiband planar inverted L patch antenna array for smart mobile phones. Journal on Electronics Engineering, 8(3), 39–42.  https://doi.org/10.26634/jele.8.3.14415.CrossRefGoogle Scholar
  97. 97.
    Wang, Y., & Cruz, J. R. (1994). Adaptive antenna arrays for the reverse link of CDMA cellular communication systems. Electronics Letters, 30, 1017–1018.CrossRefGoogle Scholar
  98. 98.
    Godard, D. N. (1980). Self-recovering equalization and carrier tracking in two-dimensional data communication systems. IEEE Transactions on Communications, Com-28(11), 1867–1875.CrossRefGoogle Scholar
  99. 99.
    Ohgane, T. (1991). Characteristics of CMA adaptive array for selective fading compensation in digital land mobile radio communications. Electronics Communications in Japan, 74, 43–53.CrossRefGoogle Scholar
  100. 100.
    Ohgane, T., Matsuzawa, N., Shimura, T., Mizuno, M., & Sasaoka, H. (1993). BER performance of CMA adaptive array for high-speed GMSK mobile communication—A description of measurements in central Tokyo. IEEE Transactions on Vehicular Technology, 42, 484–490.CrossRefGoogle Scholar
  101. 101.
    Ohgane, T., Shimura, T., Matsuzawa, N., & Sasaoka, H. (1993). An implementation of a CMA adaptive array for high speed GMSK transmission in mobile communications. IEEE Transactions on Vehicular Technology, 42, 282–288.CrossRefGoogle Scholar
  102. 102.
    Parra, I., Xu, G., & Liu, H. (1995) Least squares projective constant modulus approach. In Proceedings of IEEE international symposium on personal, indoor and mobile radio communications, Toronto, Canada, 1995 (pp. 673–676).Google Scholar
  103. 103.
    Agee, B. (1986). The least-squares CMA: A new technique for rapid correction of constant modulus signals. In Proceedings of IEEE international conference on ICASSP’86 (Vol. 11, pp. 953–956), April 1986.Google Scholar
  104. 104.
    Dakulagi, V. (2019). Adaptive beamforming algorithms using 2D-novel ULA for wireless communications. Springer Nature Applied Sciences, 1(9), 1001.  https://doi.org/10.1007/s42452-019-1009-z.CrossRefGoogle Scholar
  105. 105.
    Rong, Z. (1996). Simulation of adaptive array algorithms for CDMA systems. Master’s Thesis MPRG-TR-96-31, Mobile & Portable Radio Research Group, Virginia Tech, Blacksburg, VA, Sept. 1996.Google Scholar
  106. 106.
    Stoica, P., & Moses, R. (1997). Introduction to spectral analysis. New York: Prentice Hall.zbMATHGoogle Scholar
  107. 107.
    Hestenes, M., & Stiefel, E. (1952). Method of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49, 409–436.MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    Dakulagi, V., Noubade, A., Agasgere, A., Doddi, P., & Fatima, K. (2019). Modified adaptive beamforming algorithms for 4G-LTE smart-phones. In Soft computing and signal processing. Advances in intelligent systems and computing (Vol. 898, pp. 561–568). Springer.Google Scholar
  109. 109.
    Choi, S., & Sarkar, T. (1981). Adaptive Antenna Array Utilizing the Conjugate Gradient Method for Multipath Mobile Communication, Signal Processing, Vol. 29, pp. 319–333, 1992. Transactions on Antennas Propagation, AP-29, 847–856.Google Scholar
  110. 110.
    Choi, S. (1991). Application of the conjugate gradient method for optimum array processing (chapter 16) (Vol. V). Amsterdam: Elsevier.Google Scholar
  111. 111.
    Choi, S., & Kim, D. H. (1992). Adaptive antenna array utilizing the conjugate gradient method for compensation of multipath fading in a land mobile communication. In Proceedings of IEEE 42nd vehicular technology conference, Denver, CO (pp. 33–36).Google Scholar
  112. 112.
    Vorobyov, S. A. (2014). Array and statistical signal processing. Elsevier Academic Press Library in Signal Processing, 3, 1–51.Google Scholar
  113. 113.
    Dakulagi, V., Bakhar, M., & Vani, R. M. (2014). Implementation and optimization of modified MUSIC algorithm for high resolution DOA estimation. In Proceedings of IEEE international microwave and RF conference (pp. 190–193), December 2014.  https://doi.org/10.1109/imarc.2014.7038985.
  114. 114.
    Bakhar, M., Vani, R. M., & Hunagund, P. V. (2010). Performance analysis of MUSIC and LMS algorithms for smart antenna systems. International Journal of Electronics Engineering, 2(2), 271–275.Google Scholar
  115. 115.
    Saucan, A.-A., Chonavel, T., Sintes, C., & Le Caillec, J.-M. (2016). CPHD-DOA tracking of multiple extended sonar targets in impulsive environments. IEEE Transactions on Signal Processing, 64(5), 1147–1160.MathSciNetzbMATHCrossRefGoogle Scholar
  116. 116.
    Liu, Y., & Cuia, H. (2015). Antenna array signal direction of arrival estimation on digital signal processor (DSP). Procedia Computer Science, 55, 782–791.CrossRefGoogle Scholar
  117. 117.
    Dakulagi, V., & Bakhar, A. (2017). Novel LMS beamformer for adaptive antenna array. Elsevier Computer Science, 115, 94–100.  https://doi.org/10.1016/j.procs.2017.09.081.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringGuru Nanak Dev Engineering CollegeBidarIndia

Personalised recommendations