Advertisement

Wireless Personal Communications

, Volume 110, Issue 2, pp 563–572 | Cite as

Compact Wideband Microstrip Antenna Array Using Sequential-Phase Feed Network and Metasurfaces

  • Chen MingEmail author
Article
  • 45 Downloads

Abstract

To improve the bandwidth, cross-polarization ratio (XPR) and gain of microstrip antenna, a compact single-point fed wideband circularly polarized (CP) 2 × 2 microstrip antenna array is proposed. CP radiation with bandwidth, gain, XPR of the array is improved by the rectangular patchs with truncated-corner and tilted rectangular slot perturbation, and the cooperation with sequential-phase (SP) feed network and metasurfaces (MTSs), effectively. Compactness of the array achieved by compact SP feed network. Finally, the overall size of the antenna array is 55.4 mm × 55.4 mm × 2.1 mm, and the measurement results show that the bandwidth of voltage standing-wave ratio less than 2 is 2.7 GHz, the 3 dB axial ratio (AR) bandwidth is 2.4 GHz, the average XPR is 15 dB, the 3 dB gain bandwidth is 2.6 GHz, and the peak gain is 9.9 dB at 6.3 GHz. The experimental results are in good agreement with the simulation results, which verifies the rationality of the design.

Keywords

Antenna array SP feed network Circular polarization Microstrip antenna Metasurfaces 

Notes

References

  1. 1.
    Haneishi, M., & Suzuki, Y. (1989). Circular polarization and bandwidth. In J. R. James & P. S. Hall (Eds.), Handbook of microstrip antennas. London: Peter Peregrinus.Google Scholar
  2. 2.
    Hall, P. S., & Dahele, J. S. (1997). Dual and circularly polarized microstrip antennas. In W. Chen & K. F. Lee (Eds.), Advances in microstrip and printed antennas. New York: John Wiley & Sons.Google Scholar
  3. 3.
    Sharma, P. C., & Gupta, K. C. (1983). Analysis and optimized design of single feed circularly polarized microstrip antennas. IEEE Transactions on Antennas and Propagation,31, 949–955.CrossRefGoogle Scholar
  4. 4.
    Liu, W. C., & Kao, P. C. (2007). Design of a probe-fed H-shaped microstrip antenna for circular polarization. Journal of Electromagnetic Waves and Applications,21(7), 857–864.CrossRefGoogle Scholar
  5. 5.
    Huang, J. (1986). A technique for an array to generate circular polarization with linearly polarized elements. IEEE Transactions on Antennas and Propagation,34, 1113–1124.CrossRefGoogle Scholar
  6. 6.
    Kraft, U. R. (2007). An experimental study on 2 × 2 sequential-rotation arrays with circularly polarized microstrip radiators. IEEE Transactions on Antennas and Propagation,45(10), 1459–1466.CrossRefGoogle Scholar
  7. 7.
    Yang, S. L. S., Chair, R., Kishk, A. A., Lee, K. F., & Luk, K. M. (2007). Study on sequential feeding networks for subarrays of circularly polarized elliptical dielectric resonator antenna. IEEE Transactions on Antennas and Propagation,55(2), 321–333.CrossRefGoogle Scholar
  8. 8.
    Hall, P. S. (1989). Application of sequential feeding to wide bandwidth, circularly polarised microstrip patch arrays. IEEE Proceedings H (Microwaves, Antennas and Propagation),136(5), 390–398.CrossRefGoogle Scholar
  9. 9.
    Guan, D. F., Ding, C., Qian, Z. P., Zhang, Y. S., Guo, Y. J., & Gong, K. (2016). Broadband high-gain SIW cavity-backed circular-polarized array antenna. IEEE Transactions on Antennas and Propagation,64(4), 1493–1497.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, A., Zhang, Y., Chen, Z., & Yang, C. (2011). Development of a Ka-band wideband circularly polarized 64-element microstrip antenna array with double application of the sequential rotation feeding technique. IEEE Antennas and Wireless Propagation Letters,10, 1270–1273.CrossRefGoogle Scholar
  11. 11.
    Li, M., & Luk, K.-M. (2014). Low-cost wideband microstrip antenna array for 60-GHz applications. IEEE Transactions on Antennas and Propagation,64(4), 3012–3018.CrossRefGoogle Scholar
  12. 12.
    Lin, S., & Lin, Y. (2011). A compact sequential-phase feed using uniform transmission lines for circularly polarized sequential-rotation arrays. IEEE Transactions on Antennas and Propagation,59(7), 2721–2724.CrossRefGoogle Scholar
  13. 13.
    Li, Y., Zhnag, Z., & Feng, Z. (2013). A sequential-phase feed using a circularly polarized shorted loop structure. IEEE Transactions on Antennas and Propagation,61(3), 1443–1447.CrossRefGoogle Scholar
  14. 14.
    Deng, C. J., Li, Y., Zhang, Z. J., & Feng, Z. H. (2014). A wideband sequential phase fed circularly polarized patch array. IEEE Transactions on Antennas and Propagation,62(7), 3890–3893.CrossRefGoogle Scholar
  15. 15.
    Dong, Y., & Itoh, T. (2012). Metamaterial-based antennas. Proceedings of the IEEE,100, 2271–2285.CrossRefGoogle Scholar
  16. 16.
    Sievenpiper, D., Zhang, L., Broas, R., et al. (1999). High-impedance electromagnetic surface with a forbidden frequency band. IEEE Transactions on Microwave Theory and Techniques,47, 2059–2074.CrossRefGoogle Scholar
  17. 17.
    Yang, F., Ma, K., Qian, Y., et al. (1999). A uniplanar compact photonic-bandgap (UC-PBC) structure and its applications for microwave circuit. IEEE Transactions on Microwave Theory and Techniques,47, 1509–1514.CrossRefGoogle Scholar
  18. 18.
    Yang, F., & Rahmat-Samii, Y. (2003). Microstrip antennas integrated with electromagnetic (EBG) structures: a low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation,51, 2936–2946.CrossRefGoogle Scholar
  19. 19.
    Mosallaei, H., & Sarabandi, K. (2004). Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate. IEEE Transactions on Antennas and Propagation,52, 2403–2414.CrossRefGoogle Scholar
  20. 20.
    Chung, K., & Chaimool, S. (2012). Broadside gain and bandwidth enhancement of microstrip patch antenna using a MNZ-metasurface. Microwave and Optical Technology Letters,54, 529–532.CrossRefGoogle Scholar
  21. 21.
    Ta, S.-X., & Park, I. (2014). Dual-band operation of a circularly polarized radiator on finite artificial magnetic conductor surface. Journal of Electromagnetic Waves and Applications,28, 880–892.CrossRefGoogle Scholar
  22. 22.
    Feresidis, A., Goussetis, G., Wang, S., et al. (2005). Artificial magnetic conductor surfaces and their application to low-profile high-gain planar antennas. IEEE Transactions on Antennas and Propagation,53, 209–215.CrossRefGoogle Scholar
  23. 23.
    Ju, J., Kim, D., Lee, W., et al. (2011). Design method of a circularly-polarized antenna using Fabry-Perot cavity structure. ETRI Journal,23, 163–168.CrossRefGoogle Scholar
  24. 24.
    Ju, J., & Kim, D. (2013). Circularly-polarised high gain cavity antenna based on sequentially rotated phase feeding. Electronics Letters,49, 1198–1200.CrossRefGoogle Scholar
  25. 25.
    Yang, W., Zhou, J., Yu, Z., et al. (2014). Bandwidth and gain-enhanced circularly polarized antenna array using sequential phase feed. IEEE Antennas and Wireless Propagation Letters,13, 1215–1218.CrossRefGoogle Scholar
  26. 26.
    Maddio, S. (2015). A compact wideband circularly polarized antenna array for C-band applications. IEEE Antennas and Wireless Propagation Letters,14, 1081–1084.CrossRefGoogle Scholar
  27. 27.
    Zhong, S. S. (2015). Antenna theory and technology (2nd ed., pp. 264–319). Beijing: Publishing House of Electronics Industry.Google Scholar
  28. 28.
    Xie, M., & Chen, M. (2017). Wide axial ratio beamwidth microstrip antenna based on Bilayer substrates. High Power Laser and Particle Beams,29(11), 113003(5).Google Scholar
  29. 29.
    Chung, K. L., Chaimool, S., & Zhang, C. (2015). Wideband subwavelength-profile circularly polarised array antenna using anisotropic metasurface. Electronics Letters,51(18), 1403–1405.CrossRefGoogle Scholar
  30. 30.
    Ta, S. X., & Park, I. (2016). Wideband circularly polarized slot coupled metasurface-based array antenna. IEEE Antennas and Wireless Propagation Letters,1, 13–15.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Communication and Information EngineeringXi’an University of Posts and TelecommunicationXi’anChina

Personalised recommendations