Advertisement

Retrieving Multiple Patient Information by Using the Virtual MIMO and Path Beacon in Wireless Body Area Network

  • P. Mohamed ShakeelEmail author
  • S. Baskar
  • S. Selvakumar
Article
  • 2 Downloads

Abstract

The wireless body area network (WBAN) is the developing technology which is used to monitor the patient’s activities. The main challenges in the WBAN are Qos, Energy consumption during the information transformation, Delay and security. Thus the paper contributes the proposed method which is used to manage the above challenges. Initially the node has been placed on the human body which is configured with the mobile devices for transmitting the information. The priority of the information is decided by the node or sensor placement by default head and heart sensors. Then the information is forwarded to the nearest remedy subscribed base station through cluster heads by using the virtual MIMO method. This method uses the opportunistic approach to minimize the decision making time of the priority and the transmission queueing process. The proposed system used to combine the two or more priority information with the help of the ACK time and PATH BEACON that utilizes the maximum bandwidth to forward the information without making the collision and delay.

Keywords

Wireless body area network Remedy subscribed base station Virtual MIMO method Opportunistic approach ACK time and PATH BEACON 

Notes

References

  1. 1.
    Sharma, S., Vyas, A. L., Thakker, B., Mulvaney, D., & Datta, S. (2011). “Wireless body area network for health monitoring”, In International conference on biomedical engineering and informatics (BMEI), vol. 4.Google Scholar
  2. 2.
    Patel, S., Park, H., Bonato, P., Chan, L., & Rodgers, M. (2012). A review of wearable sensors and systems with application in rehabilitation. Journal of Neuroengineering and Rehabilitation, 9, 21.CrossRefGoogle Scholar
  3. 3.
    Kumar, Pardeep, & Lee, Hoon-Jae. (2012). Security issues in healthcare applications using wireless medical sensor networks: A survey. Journal of Sensors (Basel), 12(1), 55–91.CrossRefGoogle Scholar
  4. 4.
    Jawarkar, U., Panchore, P., & Deshmukh, S. (2013). Overview of wireless sensor network and its applications. International Journal of Electronics Communication and Computer Engineering, 4(2), 29–32.Google Scholar
  5. 5.
    Verma, G., & Moinuddin, (2014). Body area network—A perspective. International Journal of Computer Science and Information Technologies, 5(5), 6802–6809.Google Scholar
  6. 6.
    Ullah, S., Khan, P., Ullah, N., Saleem, S., Higgins, H., & Kwak, K. S. (2010). A review of wireless body area networks for medical applications. http://arxiv.org/pdf/1001.0831.pdf.
  7. 7.
    Kim, K., Lee, I. S., Yoon, M., Kim, J., Lee, H., & Han, K. (2009). An efficient routing protocol based on position information in mobile wireless body area sensor networks. In International conference on networks and communications.Google Scholar
  8. 8.
    Wang, C., Wang, Q., & Shi, S. (2012). A distributed wireless body area network for medical supervision. In IEEE international instrumentation and measurement technology conference (I2MTC).Google Scholar
  9. 9.
    Argyriou, A., Breva, A. C., & Aoun, M. (2015). Optimizing data forwarding from body area networks in the presence of body shadowing with dual wireless technology nodes. IEEE Transactions on Mobile Computing, 14(3), 632–645.CrossRefGoogle Scholar
  10. 10.
    Han, S.-H., & Park, S. K. (2011). Performance analysis of wireless body area network in indoor off-body communication. IEEE Transactions on Consumer Electronics, 57(2), 335–338.CrossRefGoogle Scholar
  11. 11.
    He, D., Chan, S., Zhang, Y., & Yang, H. (2014). Lightweight and confidential data discovery and dissemination for wireless body area networks. IEEE Journal of Biomedical and Health Informatics, 18(2), 440–448.CrossRefGoogle Scholar
  12. 12.
    Misra, S. (2015). Priority-based time-slot allocation in wireless body area networks during medical emergency situations: An evolutionary game-theoretic perspective. IEEE Journal of Biomedical and Health Informatics, 19(2), 541–548.CrossRefGoogle Scholar
  13. 13.
    Ullah, N., Khan, P., & Kwak, K. S. (2011). A very low power MAC (VLPM) protocol for wireless body area networks. Journal of Sensors, 11(4), 3717–3737.  https://doi.org/10.3390/s110403717.CrossRefGoogle Scholar
  14. 14.
    ul Huque, M. T. I., Munasinghe, K. S., & Jamalipour, A. (2014). Body node coordinator placement algorithms for wireless body area networks. Internet of Things Journal in IEEE, 2(1), 94–102.CrossRefGoogle Scholar
  15. 15.
    Chen, B., Varkey, J. P., Pompili, D., Li, J. K., & Marsic, I. (2010). Patient vital signs monitoring using wireless body area networks. http://www.ece.rutgers.edu/~pompili/paper/PID1139119.pdf. Accessed 24 Sep 2017.
  16. 16.
    Hauer, J. H., & Technische Universität Berlin, Germany. (2014). Leveraging human mobility for communication in body area networks. ACM Transactions on Sensor Networks (TOSN), 10(3), 39.CrossRefGoogle Scholar
  17. 17.
    Sukor, M., Ariffin, S., Fisal, N., Yusof, S. S., & Abdallah, A. (2008). Performance study of wireless body area network in medical environment. In Asia international conference on modeling & simulation. AICMS 08.Google Scholar
  18. 18.
    Yoo, H.-J., & Bae, J. (2013). Low energy wireless body area network systems. In IEEE international wireless symposium (IWS).Google Scholar
  19. 19.
    Filipe, L., Fdez-Riverola, F., Costa, N., & Pereira, A. (2015). Wireless body area networks for healthcare applications: Protocol stack review. International Journal of Distributed Sensor Networks, 11, 23. 213705.Google Scholar
  20. 20.
    Siddiqui, M. A., Kamal, M. B., & Moinuddin, H. (2013). Towards the development of cross layer approachfor energy efficiency and mobile wireless body area networks. International Journal of Computer and Information Technology, 2(3) (ISSN: 2279-0764).Google Scholar
  21. 21.
    Milenković, A., Otto, C., & Jovanov, E. (2006). Wireless sensor networks for personal health monitoring: Issues and an implementation. Computer Communications in Elesvier, 29, 2521–2533.CrossRefGoogle Scholar
  22. 22.
    Kim, J., Song, I., Jang, E., & Choi, S. (2012). A dynamic duty cycle MAC algorithm for wireless body area networks. International Journal of Bio-Science and Bio-Technology, 4(2), 84–92.Google Scholar
  23. 23.
    Latre, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., & Demeester, P. (2007). A low-delay protocol for multihop wireless body area networks. http://www.pats.ua.ac.be/content/publications/2007/bbraem07cicada.pdf?q=subcycle. Accessed 25 Sep 2017.
  24. 24.
    Rahim, A., Javaid, N., Aslam, M., Rahman, Z., Qasim, U., & Khan, Z. A. (2012).A comprehensive survey of MAC protocols for wireless body area networks. http://arxiv.org/pdf/1208.2351.pdf. Accessed 25 Sep 2017.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Universiti Teknikal Malaysia MelakaMelakaMalaysia
  2. 2.Karpagam Academy of Higher EducationCoimbatoreIndia
  3. 3.Periyar University SalemIndia

Personalised recommendations