Advertisement

Wireless Personal Communications

, Volume 108, Issue 4, pp 2047–2057 | Cite as

Performance Enhancement of Underwater Acoustic OFDM Communication Systems

  • Mohamed El-MahallawyEmail author
  • Adly S. TagEldien
  • Salah S. Elagooz
Article
  • 25 Downloads

Abstract

The supported bandwidth of the underwater communication systems is limited to several kilo hertz, which considers as the main challenge for Underwater Acoustic (UWA) communications. Meanwhile, the Bit-Error-Rate (BER) performance of the UWA systems is degrades as a result of water temperature, water salinity, attenuation, and multi-path propagation. In this paper, we present a modification to the conventional Orthogonal Frequency Division Multiplexing (OFDM) based (FFT) using Fast Walsh–Hadamard transform (FWHT) instead of Fast Fourier Transform (FFT). Also, the proposed algorithm is encoded and decoded using Low Density Parity Check (LDPC) coding algorithm. Simulation results show that the proposed algorithm with LDPC coding can improve the BBER system performance than the corresponding traditional one.

Keywords

Orthogonal frequency division multiplexing Law density parity check matrix Fast Walsh–Hadamard transform Fast Fourier transform Underwater acoustics 

Notes

References

  1. 1.
    Han, W., Huang, J., & Jiang, M. (2009). Performance analysis of underwater digital speech communication system based on LDPC codes. In IEEE 4th international conference industrial electronica and applications (ICIEA).Google Scholar
  2. 2.
    Ramadan, K., Dessouky, M. I., Elagooz, S., Elkordy, M., & Abd El-Samie, F. E. (2018). Joint low-complexity equalization and carrier frequency offsets compensations for underwater acoustic OFDM communication systems with banded-matrix approximation at different channel conditions. International Journal of Communication Systems.  https://doi.org/10.1002/dac.3779.CrossRefGoogle Scholar
  3. 3.
    Ramadan, K., Fiky, A. S., Dessouky, M. I., & Abd El-Samie, F. E. (2019). Joint low-complexity equalization and CFO estimation and compensation for UWA-OFDM communication systems based on discrete sine transform. The Digital Signal Processing Journal, 90, 142–149.  https://doi.org/10.1016/j.dsp.2019.02.004.CrossRefGoogle Scholar
  4. 4.
    Ramadan, K., Dessouky, M. I., Abd El-Samie, F. E., & Elagooz, S. (2018). Virtual quadrature phase shift keying with low-complexity equalization for performance enhancement of OFDM systems. International Journal of Electronics and Communications, 96, 199–206.  https://doi.org/10.1016/j.aeue.2018.08.031.CrossRefGoogle Scholar
  5. 5.
    Tao, J., Zheng, Y. R., Xiao, C., Yang, T. C., & Yang, W.-B. (2010). Channel equalization for single carrier MIMO underwater acoustic communications. EURASIP Journal on Advances in Signal Processing.  https://doi.org/10.1155/2010/281769 CrossRefGoogle Scholar
  6. 6.
    Al-Kamali, F. S., Dessouky, M. I., Sallam, B. M., Shawki, F., Al-Hanafy, W., & El-Samie, F. E. (2012). Joint low-complexity equalization and carrier frequency offsets compensation scheme for MIMO SC-FDMA systems. IEEE Transactions on Wireless Communications, 11, 869–873.CrossRefGoogle Scholar
  7. 7.
    Ramadan, K., Dessouky, M., Elkordy, M., Elagooz, S., & Abd-Elasamie, F. E. (2018). Equalization and carrier frequency offset compensation for underwater acoustic OFDM systems. Annals of Data Science, 5, 259–272.CrossRefGoogle Scholar
  8. 8.
    Huang, J. Z., Zhou, S., et al. (2011). Progressive inter-carrier interference equalization for OFDM transmission over time-varying underwater acoustic channels. IEEE Journal of Selected Topics in Signal Processing, 5, 1524–1536.CrossRefGoogle Scholar
  9. 9.
    Ramadan, K., Dessouky, M. I., Elagooz, S., Elkordy, M., & Abd El-Samie, F. E. (2019). Carrier frequency offsets estimation in UWA-OFDM communication systems using Zadoff-Chu sequences. International Journal of Electronics Letters, 7(2), 127–142.  https://doi.org/10.1080/21681724.2018.1461249.CrossRefGoogle Scholar
  10. 10.
    Kumar, P., & Kumar, P. (2013). Performance evaluation of modified OFDM for underwater communications. In IEEE international conference on communications. Google Scholar
  11. 11.
    Huang, S., Su, Y., He, Y., & Tang, S. (2012). Joint time and frequency offset estimation in LTE downlink. In International ICST conference on communications and networking, China (CHINACOM).Google Scholar
  12. 12.
    Ramadan, K. Ramadan, K. F., Fiky, A. S., Alam, H., Dessouky, M. I. & Abd El-Samie, F. E. (2019). Joint low-complexity equalization and CFO estimation and compensation for UWA-OFDM communication systems. The International Journal of Communication Systems.  https://doi.org/10.1002/dac.3972.CrossRefGoogle Scholar
  13. 13.
    Ramadan, K., Dessouky, M. I., Abd El-Samie, F. E., & Fiky, A. S. (2019). Equalization and blind CFO estimation for performance enhancement of OFDM communication systems using discrete cosine transform. The International Journal of Communication Systems.  https://doi.org/10.1002/dac.3984.CrossRefGoogle Scholar
  14. 14.
    Trivedi, V., Ramadan, K., Kumar, P., Dessouky, M. I., & Abd El-Samie, F. E. (2019). Enhanced OFDM-NOMA for next generation wireless communication: A study of PAPR reduction and sensitivity to CFO and estimation errors. The International Journal of Electronics and Communications, 102, 9–24.  https://doi.org/10.1016/j.aeue.2019.01.009.CrossRefGoogle Scholar
  15. 15.
    Trivedi, V., Ramadan, K., Kumar, P., Dessouky, M. I., & Abd El-Samie, F. E. (2019). Trigonometric transforms and precoding strategies for OFDM-based uplink hybrid multi-carrier non-orthogonal multiple access. Transactions on Emerging Telecommunications Technologies.  https://doi.org/10.1002/ett.3694.CrossRefGoogle Scholar
  16. 16.
    Yougan, C., Xiaomei, X., & Lan, Z. (2009). Performance analysis of LDPC codes over shallow water acoustic channels. In 5th international conference on wireless communications, networking and mobile computing.Google Scholar
  17. 17.
    Gallager, R. (1962). Low density parity check codes. IRE Transactions on Information Theory, 8, 21–28.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gallager, R. G. (1963). Low density parity check codes. Cambridge: MIT Press.zbMATHGoogle Scholar
  19. 19.
    Wang, D., Shi, W., & Li, X. (2013). Low-complexity carrier frequency offset estimation algorithm in TD-LTE. Journal of Networks, 8, 2220.Google Scholar
  20. 20.
    Hamood, M., & Bousskta, S. (2011). Fast Walsh–Hadamard–Fourier transform. IEEE Transactions on Signal Processing, 59, 5626–5673.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Singer, A. C., Nelson, J. K., & Kozat, S. S. (2009). Signal processing for underwater acoustic communication. IEEE Communications Magazine, 47(1), 90–96.CrossRefGoogle Scholar
  22. 22.
    Qarabaqi, P., & Stojanovic, M. (2013). Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels. EEE Journal of Oceanic Engineering, 38, 701–717.CrossRefGoogle Scholar
  23. 23.
    Ding, H., Neasham, J. A., & Boussakta, S. (2015). Performance evaluation of T-transform based OFDM in underwater acoustic communications. In OCEANS 2015Genova, Genoa, Italy, 21 September 2015.Google Scholar
  24. 24.
    Kumar, P., & Kumar, P. (2013). Performance evaluation of modified OFDM for underwater communications. In IEEE international conference on communications: IEEE ICC’13Workshop on radar and sonar networks (RSN).Google Scholar
  25. 25.
    Ahmed, M. S., & Al-iesawi, S. A. (2013). Efficient joint carrier offset and channel estimator for T-OFDM system. In The first international conference of electrical, communication, computer, power and control engineering ICECCPCE’13, Iraq.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohamed El-Mahallawy
    • 1
    Email author
  • Adly S. TagEldien
    • 1
  • Salah S. Elagooz
    • 1
  1. 1.Faculty of Engineering at ShoubraBenha UniversityCairoEgypt

Personalised recommendations