Wireless Personal Communications

, Volume 108, Issue 2, pp 895–905 | Cite as

Sapphire Stacked Rectangular Dielectric Resonator Aperture Coupled Antenna for C-Band Applications

  • Garima Bakshi
  • Arti VaishEmail author
  • Rajveer Singh Yaduvanshi


This paper presents a novel design of antenna using sapphire. An aperture coupled two- layer stacked rectangular dielectric resonator antenna structure design consists of sapphire and TMM13i. Due to sapphire and TMM13i physical attributes such as hardness, resistance to physical change and chemical erosion the designed antenna is best suited for long distance, underground and rugged communication in addition to C band and 5G applications. The Aperture coupled feed has been employed because of its advantage of providing better isolation between antennas and the feed network. The designed antenna provides the gain of 5.2 dB and impedance matching of 50 ohms. The software High-Frequency Structure Simulator has been employed to simulate antenna design. The prototype of the antenna has been designed and tested on Vector Network Analyzer and Anechoic Chamber. The simulated results are in close proximity of tested results.


Stacked rectangular dielectric resonator antenna Sapphire TMM13i C-band Anechoic chamber 



  1. 1.
    Long, S. A., McAllister, M. W., & Shen, L. C. (1983). The resonant cylindrical dielectric cavity antenna. IEEE Transactions on Antennas and Propagation, 31, 406–412.CrossRefGoogle Scholar
  2. 2.
    Li, B., & Leung, K. W. (2005). A wideband strip-fed rectangular dielectric resonator antenna. In IEEE.Google Scholar
  3. 3.
    Zhang, Y., Deng, J.-Y., Li, M.-J., Sun, D., & Guo, L.-X. (2019). A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications. IEEE Antennas and Wireless Propagation Letters, 18(4), 747–751.CrossRefGoogle Scholar
  4. 4.
    Bakshi, G., Singh Yaduvanshi, R., & Kumar, A. (2016). Design of rectangular dielectric antenna using sapphire with probe fed arrangement. International Journal of Industrial Electronics and Electrical Engineering (IJIEEE), 4(9), ISSN: 2347-6982.Google Scholar
  5. 5.
    Pan, Y. M., & Zheng, S. Y. (2006). A low-profile stacked dielectric resonator antenna with high-gain and wide bandwidth. Awpl-03-15-0411.R1.Google Scholar
  6. 6.
    Kishk, A. A., Zhang, X., Glisson, A. W., & Kajfez, D. (2003). Numerical analysis of stacked dielectric resonator antennas excited by a coaxial probe for wideband applications. IEEE Transactions on Antennas Propagation, 51(8), 1996–2006.CrossRefGoogle Scholar
  7. 7.
    Petosa, A., Simons, N., Siushansian, R., Ittipiboon, A., & Cuhaci, M. (2000). Design and analysis of multi-segment dielectric resonator antennas. IEEE Transactions on Antennas Propagation, 48(5), 738–742.CrossRefGoogle Scholar
  8. 8.
    Li, B., & Leung, K. W. (2005). Strip-fed rectangular dielectric resonator antennas with/without a parasitic patch. IEEE Transactions on Antennas and Propagation, 53(7), 2200–2207.CrossRefGoogle Scholar
  9. 9.
    Mongia, R. K., & Ittipiboon, A. (1997). Theoretical and experimental investigations on rectangular dielectric resonator antennas. IEEE Transactions on Antennas and Propagation, 45, 1348–1356.CrossRefGoogle Scholar
  10. 10.
    Neshati, M. H., & Wu, Z. (2001). Rectangular dielectric resonator antennas: Theoretical modelling and experiments. In 7th international conference on antennas and propagation, 17–20 April 2001, Conference Publication No. 480. IEEE.Google Scholar
  11. 11.
    Maity, S., & Gupta, B. (2017). Theory and experiments on horizontally inhomogeneous rectangular dielectric resonator antenna. AEU-International Journal of Electronics and Communications, 76, 158–165.CrossRefGoogle Scholar
  12. 12.
    St. Martin, J., Antar, Y. M. M., Kishk, A. A., Ittipiboon, A., & Cuhaci, M. (1990). Dielectric resonator antenna using aperture coupling. Electronics Letters, 26(24), 2015–2016.CrossRefGoogle Scholar
  13. 13.
    St. Martin, J., Antar, Y. M. M., Kishk, A. A., Ittipiboon, A., & Cuhaci, M. (1991). Aperture-coupled dielectric resonator antenna. In 1991 IEEE international symposium on antennas and propagation digest (pp. 1086–1089).Google Scholar
  14. 14.
    Ashoor, A. Z., & Ramahi, O. M. (2015). Dielectric resonator antenna arrays for microwave energy harvesting and far-field wireless power transfer. Progress in Electromagnetics Research C, 59, 89–99.CrossRefGoogle Scholar
  15. 15.
    Masius, A. A., Wong, Y. C., & Lau, K. T. (2017). Miniature high gain slot-fed rectangular dielectric resonator antenna for IoT RF energy harvesting. International Journal of Electronics and Communications, 85, 39–46.CrossRefGoogle Scholar
  16. 16.
    Mrnka, M., & Raida, Z. (2015). Enhanced gain dielectric resonator antenna based on the combination of higher order modes. IEEE Antennas Wireless Propagation Letter, 1225, 1.Google Scholar
  17. 17.
    Masius, A. A., & Wong, Y. (2017). Design of high gain co-planar waveguide fed staircase shaped monopole antenna with modified ground plane for RF energy harvesting application. Proceedings of Mechanical Engineering Research Day, 2017, 118–119.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Garima Bakshi
    • 1
  • Arti Vaish
    • 2
    Email author
  • Rajveer Singh Yaduvanshi
    • 3
  1. 1.Ansal UniversityGurgaonIndia
  2. 2.School of Engineering and TechnologyAnsal UniversityGurgaonIndia
  3. 3.Ambedkar Institute of Advanced Communication Technologies and ResearchNew DelhiIndia

Personalised recommendations