Advertisement

Cost and Sub-Epoch Based Stable Energy-Efficient Clustering Algorithm for Heterogeneous Wireless Sensor Networks

  • Akshay VermaEmail author
  • Tarique Rashid
  • Prateek Raj Gautam
  • Sunil Kumar
  • Arvind Kumar
Article
  • 6 Downloads

Abstract

This paper proposes a cost and sub-epoch based stable energy-efficient clustering (CSSEEC) algorithm for heterogeneous wireless sensor networks. In this paper, we provide a cost function for cluster heads selection and a sub-epoch to re-stands the previously selected cluster heads as normal nodes in cluster head selection process for future rounds. Cost function alleviates the energy consumption of sensor nodes by optimum selection of cluster heads and modified sub-epoch makes the energy balance among the normal nodes. Thereby, the performance parameters like stability period, usable period, throughput and network lifetime are improved remarkably. It is also discerned that the stability period is the paramount parameter than others. By improving this parameter, overall performance of network is improved. Simulation results verified that proposed CSSEEC protocol is more efficient than existing protocols.

Keywords

Stability period Network coverage Usable period Wireless sensor networks 

Notes

References

  1. 1.
    Tyagi, S., & Kumar, N. (2013). A systematic review on clustering and routing techniques based upon leach protocol for wireless sensor networks. Journal of Network and Computer Applications, 36(2), 623–645.CrossRefGoogle Scholar
  2. 2.
    Shen, H., & Bai, G. (2016). Routing in wireless multimedia sensor networks: A survey and challenges ahead. Journal of Network and Computer Applications, 71, 30–49.CrossRefGoogle Scholar
  3. 3.
    Arora, V. K., Sharma, V., & Sachdeva, M. (2016). A survey on leach and other’s routing protocols in wireless sensor network. Optik-International Journal for Light and Electron Optics, 127(16), 6590–6600.CrossRefGoogle Scholar
  4. 4.
    Kumar, L., Sharma, V., & Singh, A. (2017). Feasibility and modelling for convergence of optical-wireless network-a review. AEU International Journal of Electronics and Communications, 80, 144–156.CrossRefGoogle Scholar
  5. 5.
    Alyaoui, N., Kachouri, A., Zaatouri, I., & Guiloufi, A. B. (2017). A comparative study of the energy efficient clustering protocols in heterogeneous and homogeneous wireless sensor networks. Wireless Personal Communications, 97(4), 6453–6468.CrossRefGoogle Scholar
  6. 6.
    Randhawa, S., & Jain, S. (2017). Data aggregation in wireless sensor networks: Previous research, current status and future directions. Wireless Personal Communications, 97(3), 3355–3425.CrossRefGoogle Scholar
  7. 7.
    Ettus, M. (1998). System capacity, latency, and power consumption in multihop-routed ss-cdma wireless networks. In Radio and wireless conference, 1998. RAWCON 98 (pp. 55–58). IEEE.Google Scholar
  8. 8.
    Sen, F., Bing, Q., & Liangrui, T. (2011). An improved energy-efficient pegasis-based protocol in wireless sensor networks. In 2011 Eighth international conference on fuzzy systems and knowledge discovery (FSKD) (Vol. 4, pp. 2230–2233). IEEE.Google Scholar
  9. 9.
    Luo, H., Ye, F., Cheng, J., Lu, S., & Zhang, L. (2005). Ttdd: Two-tier data dissemination in large-scale wireless sensor networks. Wireless Networks, 11(1–2), 161–175.CrossRefGoogle Scholar
  10. 10.
    Zhen, H., Li, Y., & ZHANG, G.-J. (2013). Efficient and dynamic clustering scheme for heterogeneous multi-level wireless sensor networks. Acta Automatica Sinica, 39(4), 454–460.CrossRefGoogle Scholar
  11. 11.
    Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 15(2), 551–591.CrossRefGoogle Scholar
  12. 12.
    Mottaghi, S., & Zahabi, M. R. (2015). Optimizing leach clustering algorithm with mobile sink and rendezvous nodes. AEU-International Journal of Electronics and Communications, 69(2), 507–514.CrossRefGoogle Scholar
  13. 13.
    Sivaraj, C., Alphonse, P., & Janakiraman, T. (2017). Independent neighbour set based clustering algorithm for routing in wireless sensor networks. Wireless Personal Communications, 96(4), 6197–6219.CrossRefGoogle Scholar
  14. 14.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar
  15. 15.
    Smaragdakis, G., Matta, I., & Bestavros, A. (2004). Sep: A stable election protocol for clustered heterogeneous wireless sensor networks. Technical report, Boston University Computer Science Department.Google Scholar
  16. 16.
    Qing, L., Zhu, Q., & Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications, 29(12), 2230–2237.CrossRefGoogle Scholar
  17. 17.
    Masaeli, N., Javadi, H. H. S., & Noori, E. (2013). Optimistic selection of cluster heads based on facility location problem in cluster-based routing protocols. Wireless Personal Communications, 72(4), 2721–2740.CrossRefGoogle Scholar
  18. 18.
    Wang, M.-Y., Ding, J., Chen, W.-P., & Guan, W.-Q. (2015). Search: A stochastic election approach for heterogeneous wireless sensor networks. IEEE Communications Letters, 19(3), 443–446.CrossRefGoogle Scholar
  19. 19.
    Mekonnen, M. T., & Rao, K. N. (2017). Cluster optimization based on metaheuristic algorithms in wireless sensor networks. Wireless Personal Communications, 97(2), 2633–2647.CrossRefGoogle Scholar
  20. 20.
    Elshrkawey, M., Elsherif, S. M., & Wahed, M. E. (2018). An enhancement approach for reducing the energy consumption in wireless sensor networks. Journal of King Saud University-Computer and Information Sciences, 30, 259–267.CrossRefGoogle Scholar
  21. 21.
    Arasu, K., & Ganesan, R. (2018). Effective implementation of energy aware routing for wireless sensor network. Materials Today Proceedings, 5(1), 1186–1193.CrossRefGoogle Scholar
  22. 22.
    Li, C., Bai, J., Gu, J., Yan, X., & Luo, Y. (2018). Clustering routing based on mixed integer programming for heterogeneous wireless sensor networks. Ad Hoc Networks, 72, 81–90.CrossRefGoogle Scholar
  23. 23.
    Arora, V. K., Sharma, V., & Sachdeva, M. (2016). A survey on leach and others routing protocols in wireless sensor network. Optik-International Journal for Light and Electron Optics, 127(16), 6590–6600.CrossRefGoogle Scholar
  24. 24.
    Furuta, T., Sasaki, M., Ishizaki, F., Suzuki, A., & Miyazawa, H. (2009). A new clustering model of wireless sensor networks using facility location theory. Journal of the Operations Research Society of Japan, 52(4), 366–376.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ding, X.-X., Ling, M., Wang, Z.-J., & Song, F.-L. (2017). Dk-leach: An optimized cluster structure routing method based on leach in wireless sensor networks. Wireless Personal Communications, 96(4), 6369–6379.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Motilal Nehru National Institute of Technology AllahabadPrayagrajIndia

Personalised recommendations