A Low Complexity PAPR Reduction Architecture for OFDM-DSCK Communication System

  • Majid Mobini
  • Mohammad Reza ZahabiEmail author


In this paper, a merit factor-based method is introduced for peak to average power ratio (PAPR) reduction of Orthogonal Frequency Division Multiplexing-based Differential Chaos Shift Keying (OFDM-DCSK) system. We generate some chaotic binary sequences and select some of the generated sequences with good autocorrelation properties, using merit factor measurement before selected mapping (SLM) process. Afterwards, different from conventional SLM, we use the chaotic reference generator to produce binary chaotic sequence as a phase rotator for SLM process. As a result, the phase generation unit in the conventional SLM can be omitted. Furthermore, we show that proposed structure is suitable for the OFDM DCSK system due to the use of non-coherent receiver and dealing with aperiodic autocorrelation function. Finally, the energy efficiency is evaluated, and the Bit Error Rate performance is calculated for the proposed system. Simulation results show that applying the merit factor-based method can improve the PAPR of the system compared with SLM method. Since the number of candidates in the proposed system is equal to the number of candidates in the SLM-based method, employing merit factor-based technique does not impose any redundancy and complexity in comparison to the SLM-based method.


OFDM DCSK PAPR Merit factor Selected mapping Chaotic sequence 



This work was supported by the Babol Noshirvani University of Technology under Grant No.: BNUT/925120008/95.


  1. 1.
    Fang, Y., Han, G., Chen, P., Lau, F. C. M., Chen, G., & Wang, L. (2016). A survey on DCSK-based communication systems and their application to UWB scenarios. IEEE Communications Surveys & Tutorials, 18(3), 1–34.CrossRefGoogle Scholar
  2. 2.
    Kaddoum, G., Tran, H. V., Kong, L., & Atallah, M. (2016). Design of Simultaneous wireless information and power transfer scheme for short reference DCSK communication systems. IEEE Transactions on Communications, 65(1), 431–443.Google Scholar
  3. 3.
    Mobini, M., & Zahabi, M.R. (2016). An approach to security in VANET’s using chaos-based cryptography. In 16th international conference on traffic and transportation engineering (pp. 2760–2766).Google Scholar
  4. 4.
    Yang, H., Tang, W. K. S., Chen, G., & Jiang, G. P. (2016). System design and performance analysis of orthogonal multi-level differential chaos shift keying modulation scheme. IEEE Transactions Circuits System-I, 63, 146–156.CrossRefGoogle Scholar
  5. 5.
    Litvinenko A., & Aboltins, A. (2015). Chaos based linear precoding for OFDM. In 2015 advances in wireless and optical communications (RTUWO) (pp. 13–17). IEEE.Google Scholar
  6. 6.
    Lau, F. C. M., & Tse, C. K. (2003). Chaos-based digital communication systems (Vol. 1, pp. 30–32). Berlin: Springer.CrossRefGoogle Scholar
  7. 7.
    Kolumba´n, G., Vizvari, G.K., Schwarz, W., et al. (1996). Differential chaos shift keying: A robust coding for chaos communication. In International workshop on non-linear dynamics of electronic systems (pp. 92–97). Seville.Google Scholar
  8. 8.
    Galias, Z., & Maggio, G. (2001). Quadrature chaos-shift keying: theory and performance analysis. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 48(12), 1510–1519.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Mobini, M., & Zahabi, M. R. (2017). Power allocation for multi-user OFDM-DCSK system in frequency selective fading channel. Physical Communications, 24, 146–153.CrossRefGoogle Scholar
  10. 10.
    Escribano, F. J., Kaddoum, G., Wagemakers, A., & Giard, P. (2016). Design of a new differential chaos-shift keying system for continuous mobility. IEEE Transactions on Communications, 64(5), 2066–2078.CrossRefGoogle Scholar
  11. 11.
    Movassaghi, S., Majidi, A., Jamalipour, A., et al. (2016). Enabling interference-aware and energy-efficient coexistence of multiple wireless body area networks with unknown dynamics. IEEE Access, 4, 2935–2951.CrossRefGoogle Scholar
  12. 12.
    Mazzini, G., Rovatti, R., & Setti, G. (2007). Chaos-based spreading in DSUWB sensor networks increases available bit rate. IEEE Transactions Circuits System-I, 54(6), 1327–1339.CrossRefzbMATHGoogle Scholar
  13. 13.
    Chong, C. C., & Yong, S. K. (2008). ‘UWB direct chaotic communication technology for low-rate WPAN applications. IEEE Transactions Vehicular Technology, 57, 1527–1536.CrossRefGoogle Scholar
  14. 14.
    Yang, H., & Jiang, G. P. (2012). High-efficiency differential-chaos-shift-keying scheme for chaos-based non coherent communication. IEEE Transactions on Circuits and System II: Express Briefs, 59(5), 312–316.CrossRefGoogle Scholar
  15. 15.
    Sangeetha, M., & Bhaskar, V. (2018). NR-DCSK based chaotic communications in MIMO multipath channels. Wireless Personal Communications, 103(2), 1819–1834.CrossRefGoogle Scholar
  16. 16.
    Chen, P., Wang, L., & Chen, G. (2012). DDCSK-Walsh coding: A reliable chaotic modulation-based transmission technique. IEEE Transactions on Circuits and System II: Express Briefs, 59(2), 128–132.CrossRefGoogle Scholar
  17. 17.
    Wang, S., Zhu, J., & Zhou, J. (2012). OFDM-based chaotic spread spectrum communications with high bandwidth efficiency. In Proceedings international conference control engineering and communication technology (pp. 940–943). Liaoning.Google Scholar
  18. 18.
    Quyen, N.X., Cong, L.V., Long, N.H., et al. (2015). An OFDM-based chaotic DSSS communication system with M-PSK modulation. In Proceedings IEEE 5th international conference communication and electronics (pp. 106–111). Danang.Google Scholar
  19. 19.
    Shahriar, C., La Pan, M., Lichtman, M., et al. (2015). PHY-layer resiliency in OFDM communications: a tutorial. IEEE Communications Surveys & Tutorials, 17(1), 292–314.CrossRefGoogle Scholar
  20. 20.
    Bellalta, B., Bononi, L., Bruno, R., & Kassler, A. (2016). Next generation IEEE 802.11 wireless local area networks: Current status, future directions and open challenges. Computer Communications, 75, 1–25.CrossRefGoogle Scholar
  21. 21.
    Kaddoum, G., Richardson, F., & Gagnon, F. (2013). Design and analysis of a multi-carrier differential chaos shift keying communication system. IEEE Transactions on Communications, 61(8), 3281–3291.CrossRefGoogle Scholar
  22. 22.
    Li, S., Zhao, Y., & Wu, Z. (2015). Design and analysis of an OFDM-based differential chaos shift keying communication system. Journal of Communications, 10(3), 199–205.CrossRefGoogle Scholar
  23. 23.
    Huang, T., Wang, L., Xu, W., & Chen, G. (2017). A multi-carrier M-Ary differential chaos shift keying system with low PAPR. IEEE Access, 5, 18793–18803.CrossRefGoogle Scholar
  24. 24.
    Prasad, R. (2004). OFDM for wireless communications systems (pp. 150–155). Norwood: Artech House.Google Scholar
  25. 25.
    Paredes, M. C., Escudero-Garzás, J. J., & Fernández-Getino García, M. J. (2016). PAPR reduction via constellation extension in OFDM systems using generalized benders decomposition and branch-and-bound techniques. IEEE Transactions on Vehicular Technology, 65, 5133–5145.CrossRefGoogle Scholar
  26. 26.
    Sarala, B., Venkateswarlu, D. S., & Bhandari, B. N. (2012). Overview of MC CDMA PAPR reduction techniques. International Journal of Distributed and Parallel Systems (IJDPS), 3(2), 193–206.CrossRefGoogle Scholar
  27. 27.
    Che, Y. H., & Tsai, S. H. (2014). PAPR analysis and mitigation algorithms for beamforming MIMO OFDM systems. IEEE Transactions on Wireless Communication, 13(5), 2588–2600.CrossRefGoogle Scholar
  28. 28.
    Reddy, B. S. K., & Lakshmi, B. (2015). Packet data transmission in worldwide interoperability for microwave access with reduced peak to average power ratio and out-band distortion using software defined radio. IET Communications, 9(8), 1110–1121.CrossRefGoogle Scholar
  29. 29.
    Memon, S.A., Umrani, A.W., et al. (2011). A peak to average power ratio reduction of MC CDMA system using error control selective mapping. In Proceedings electronics research symposium (pp. 1193–1196). Marrakesh.Google Scholar
  30. 30.
    Deng, J. H., Liao, S. M., & Huang, S. Y. (2012). Design of low peak-to-average power ratio transceiver with enhanced link quality for coded single-carrier frequency division multiple access system. IET Communications, 6(15), 2432–2441.MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Bauml, R. W., Fischer, R. F. H., & Huber, J. B. (1996). Reducing the peak to average power ratio of multicarrier modulation by selected mapping. IEEE Electronic Letters, 32, 2056–2057.CrossRefGoogle Scholar
  32. 32.
    Sudha, V., Syamkumar, M., & Kumar, D. S. (2017). A low complexity modified SLM and companding based PAPR reduction in localized OFDMA. Wireless Personal Communications, 96(2), 3207–3226.CrossRefGoogle Scholar
  33. 33.
    Sairam, M. V. S., Riyaz, S., Madhu, R., & Harini, V. (2018). Low-complexity selected mapping scheme using a bank of butterfly circuits in orthogonal frequency division multiplexing systems. Wireless Personal Communications, 99(3), 1315–1328.CrossRefGoogle Scholar
  34. 34.
    Jedwab, J., Katz, D. J., & Schmidt, K. U. (2013). Advances in the merit factor problem for binary sequences. Journal of Combinatorial Theory Series A, 120(4), 882–906.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Mercer, I. (2013). Merit factor of Chu sequences and best merit factor of polyphase sequences. IEEE Transactions Information Theory, 59(9), 6083–6086.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Huo, F. (2011). Sequences design for OFDM and CDMA systems. MSc Thesis. Waterloo: University of Waterloo.Google Scholar
  37. 37.
    Kaddoum, G. (2016). Wireless chaos-based communication systems: A Comprehensive survey. IEEE Access, 4, 2621–2648.CrossRefGoogle Scholar
  38. 38.
    Chen, H. (2006). The next generation CDMA technologies. Hoboken: Wiley. ISBN 9780470022948.Google Scholar
  39. 39.
    Vembu, S., & Viterbi, A.J. (1996). Two different philosophies in CDMA-A comparison. In Proceedings IEEE VTC (vol. 96, pp. 869–873). Atlanta.Google Scholar
  40. 40.
    Peterson, R. L., Ziemer, R. E., & Borth, D. E. (1995). Introduction to spread spectrum communications. Upper Saddle River: Prentice Hall Inc.Google Scholar
  41. 41.
    Vitali, S., Rovatti, R., & Setti, G. (2006). Improving PA efficiency by chaos-based spreading in multicarrier DS-CDMA systems. In IEEE international symposium circuits systems (pp. 1195–1198). Island of Kos.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringBabol Noshirvani University of TechnologyBabolIran

Personalised recommendations