Advertisement

Real Time Multi Object Detection for Blind Using Single Shot Multibox Detector

  • Adwitiya Arora
  • Atul Grover
  • Raksha Chugh
  • S. Sofana RekaEmail author
Article
  • 27 Downloads

Abstract

According to world health statistics 285 million out of 7.6 billion population suffers visual impairment; hence 4 out of 100 people are blind. Absence of vision restricts the mobility of a person to pronounced extent and hence there is a need to build an explicit device to conquer guiding aid to the prospect. This paper proposes to build a prototype that performs real time object detection using image segmentation and deep neural network. Further the object, its position with respect to the person and accuracy of detection is prompted through speech stimulus to the blind person. The accuracy of detection is also prompted to the device holder. This work uses a combination of single-shot multibox detection framework with mobileNet architecture to build rapid real time multi object detection for a compact, portable and minimal response time device construction.

Keywords

Deep neural network Single shot multibox detector Text to speech Mean average precision Rectified linear unit 

Notes

References

  1. 1.
  2. 2.
    Shoval, S., Ulrich, I., & Borenstein, J. (2003). NavBelt and the Guide-Cane [obstacle-avoidance systems for the blind and visually impaired. IEEE Robotics and Automation Magazine, 10(1), 9–20.CrossRefGoogle Scholar
  3. 3.
    Wang, Y., & Kuchenbecker, K. J. (2012). HALO: Haptic alerts for low-hanging obstacles in white cane navigation. In 2012 IEEE haptics symposium (HAPTICS), Vancouver (pp. 527–532).Google Scholar
  4. 4.
    Chumkamon, S., Tuvaphanthaphiphat, P., & Keeratiwintakorn, P. (2008). A blind navigation system using RFID for indoor environments. In 2008 5th International conference on electrical engineering/electronics, computer, telecommunications and information technology, Krabi (pp. 765–768).Google Scholar
  5. 5.
    Faria, J., Lopes, S., Fernandes, H., Martins, P., & Barroso, J. (2010). Electronic white cane for blind people navigation assistance. In 2010 World automation congress, Kobe (pp. 1–7).Google Scholar
  6. 6.
    Lavanya, G., Preethy, W., Shameem, A., & Sushmitha, R. (2013). Passenger BUS alert system for easy navigation of blind. In 2013 international conference on circuits, power and computing technologies (ICCPCT), Nagercoil (pp. 798–802).Google Scholar
  7. 7.
    Adame, M. R., Yu, J., Moller, K., & Seemann, E. (2013). A wearable navigation aid for blind people using a vibrotactile information transfer system. In 2013 ICME international conference on complex medical engineering, Beijing (pp. 13–18).Google Scholar
  8. 8.
    Ando, B. (2003). Electronic sensory systems for the visually impaired. IEEE Instrumentation and Measurement Magazine, 6(2), 62–67.CrossRefGoogle Scholar
  9. 9.
    Wachaja, A., Agarwal, P., Zink, M., Adame, M. R., Möller, K., & Burgard, W. (2015). Navigating blind people with a smart walker. In 2015 IEEE/RSJ international conference on intelligent robots and systems (IROS), Hamburg (pp. 6014–6019).Google Scholar
  10. 10.
    Dakopoulos, D., & Bourbakis, N. G. (2010). Wearable obstacle avoidance electronic travel aids for blind: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(1), 25–35.CrossRefGoogle Scholar
  11. 11.
    Balasuriya, B. K., Lokuhettiarachchi, N. P., Ranasinghe, A. R. M. D. N., Shiwantha, K. D. C., & Jayawardena, C. (2017). Learning platform for visually impaired children through artificial intelligence and computer vision. In 2017 11th International conference on software, knowledge, information management and applications (SKIMA), Malabe, Sri Lanka (pp. 1–7).Google Scholar
  12. 12.
    Mancini, A, Frontoni, E, & Zingaretti, P. (2018). Mechatronic system to help visually impaired users during walking and running. IEEE Transactions on Intelligent Transportation Systems, 19, 649–660. ISSN 1524-9050.Google Scholar
  13. 13.
    Dunai, L. D., Lengua, I. L., Tortajada, I., & Simon, F. B. (2014) Obstacle detectors for visually impaired people. In 2014 International conference on optimization of electrical and electronic equipment (OPTIM), Bran (pp. 809–816).Google Scholar
  14. 14.
    Xiong, J. (2018). Tutorial-1: Machine learning and deep learning. In 2018 23rd Asia and South Pacific design automation conference (ASP-DAC), Jeju, Korea (South) (pp. 19–25).Google Scholar
  15. 15.
    Noble, F. K. (2017) A mobile robot platform for supervised machine learning applications. In 2017 24th International conference on mechatronics and machine vision in practice (M2VIP), Auckland (pp. 1–6).Google Scholar
  16. 16.
    Barbosa, C., Santana, O., & Silva, B. (2017). An unsupervised machine learning algorithm for visual target identification in the context of a robotics competition. In 2017 Latin American robotics symposium (LARS) and 2017 Brazilian symposium on robotics (SBR), Curitiba (pp. 1–6).Google Scholar
  17. 17.
    DiStasio, M. M., Francis, J. T., & Boraud, T. (2013). Use of frontal lobe hemodynamics as reinforcement signals to an adaptive controller. PLoS ONE, 8, e69541. ISSN 1932-6203.Google Scholar
  18. 18.
    Chhatbar, P. Y., Francis, J. T., Fridman, E. A. (2013). Towards a naturalistic brain–machine interface: Hybrid torque and position control allows generalization to novel dynamics. PLoS ONE, 8, e52286. ISSN 1932-6203.Google Scholar
  19. 19.
    Moshovos, et al. (2018). Value-based deep-learning acceleration. IEEE Micro, 38(1), 41–55.CrossRefGoogle Scholar
  20. 20.
    Ranganathan, H., Venkateswara, H., Chakraborty, S., & Panchanathan, S. (2017). Deep active learning for image classification. In 2017 IEEE international conference on image processing (ICIP), Beijing, China (pp. 3934–3938).Google Scholar
  21. 21.
    da Silva, L. C. B., de Oliveira Rocha, H. R., Castellani, C. E. S., Segatto, M. E. V., & Pontes, M. J. (2017) Improving temperature resolution of distributee temperature sensor using Artificial Neural Network. In Microwave and optoelectronics conference (IMOC) 2017 SBMO/IEEE MTT-S international (pp. 1–5).Google Scholar
  22. 22.
    Han, W. S., & Han, I. S. (2017). Bio-inspired neuromorphic visual processing with neural networks for cyclist detection in vehicle’s blind spot and segmentation in medical CT images. In 2017 Computing conference, London (pp. 744–750).Google Scholar
  23. 23.
    Yang, H., Yuan, C., Xing, J., & Hu, W. (2017). SCNN: Sequential convolutional neural network for human action recognition in videos. In 2017 IEEE international conference on image processing (ICIP), Beijing, China (pp. 355–359).Google Scholar
  24. 24.
    Deng, Z., Fan, H., Xie, F., Cui, Y., & Liu, J. (2017). Segmentation of dermoscopy images based on fully convolutional neural network. In 2017 IEEE international conference on image processing (ICIP), Beijing, China (pp. 1732–1736).Google Scholar
  25. 25.
    Cho, C., Lee, Y. H., & Lee, S., (2017). Prostate detection and segmentation based on convolutional neural network and topological derivative. In 2017 IEEE international conference on image processing (ICIP), Beijing, China (pp 3071–3074).Google Scholar
  26. 26.
    Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137–1149.CrossRefGoogle Scholar
  27. 27.
    Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In 2016 IEEE conference on computer vision and pattern recognition (CVPR), Las Vegas, NV (pp. 779–788).Google Scholar
  28. 28.
    Liu, W., et al. (2016). SSD: Single shot MultiBox detector. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer vision—ECCV 2016. ECCV 2016.Google Scholar
  29. 29.
    Ning, C., Zhou, H., Song, Y., & Tang, J. (2017). Inception single shot MultiBox detector for object detection. In 2017 IEEE international conference on multimedia & expo workshops (ICMEW), Hong Kong (pp. 549–554).Google Scholar
  30. 30.
    Cengil, E., Çınar, A., & Özbay, E. (2017). Image classification with caffe deep learning framework. In 2017 International conference on computer science and engineering (UBMK), Antalya (pp. 440–444).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronics EngineeringVIT UniversityChennaiIndia

Personalised recommendations