Advertisement

Energy Harvesting Enhancement of Nanoantenna Coupled to Gemometric Diode Using Terhertz Transmitarray

  • Saber Helmy Zainud-Deen
  • Hosam Ali El-Araby
  • Hend Abd El-Azem MalhatEmail author
Article
  • 8 Downloads

Abstract

This paper introduces the use of rhombus shaped dipole nanoantenna coupled to geometric diode in energy harvesting at 19.4 THz. An arc-shaped geometric diode is placed in the gap between the dipole arms. The diode I–V characteristics are investigated using the Monte Carlo simulation. Two approaches for enhancing the received voltage of nanoantenna energy harvesting at 19.4 THz are investigated. In the first approach, a terahertz transparent transmitarray is used to focus the electromagnetic waves on the surface of the nanoantenna coupled to the geometric diode. The received voltage is increased from 16.5 μV for single nanoantenna to 97.6 μV for the transmitarray coupled to the nanoantenna. In the second approach, Yagi nanoantenna arrangements are used to enhance the directivity of the single element and is coupled to the transmitarray.

Keywords

Graphene Rectenna Geometric diode Nanoantenna Transmitarray Energy harvesting 

Notes

References

  1. 1.
    Moddel, G., & Grover, S. (2013). Rectenna Solar Cells. New York: Springer.CrossRefGoogle Scholar
  2. 2.
    Strassner, B. H., & Chang, K. (2005). Rectifying antennas (rectennas). In Encyclopedia of RF and microwave engineering (pp. 4418). NJ, Hoboken: Wiley.Google Scholar
  3. 3.
    Zainud-Deen, S. H., Eltresy, N. A., Malhat, H. A., & Awadalla, K. H. (2016). Single/dual-polarized infrared rectenna for solar energy harvesting. Advanced Electromagnetics, 5(2), 1–9.CrossRefGoogle Scholar
  4. 4.
    Eltresy, N. A., Zainud-Deen, S. H., & Malhat, H. A. (2016). Nanoantennas design and applications. Deutschland: Lap Lambert Academic Publishing, AV Akademikerverlag GmbH & Co. KG.Google Scholar
  5. 5.
    Di Garbo, C., Livreri, P., & Vitale, G. (2016). Review of infrared nanoantennas for energy harvesting. In International conference on modern electrical power engineering (ICMEPE), Accepted for Las Palmas (pp. 6–8).Google Scholar
  6. 6.
    Hashem, I. E. (2013). Infrared solar energy harvesting using nano-rectennas. M.Sc. Faculty of Engineering, Cairo University, Giza.Google Scholar
  7. 7.
    El-Araby, H. A., Malhat, H. A., & Zainud-Deen, S. H. (2017). Performance of nanoantenna-coupled geometric diode with infrared radiation. In 34th National radio science conference (NRSC) (pp. 15–21). IEEE.Google Scholar
  8. 8.
    Grover, S. (2011). Diodes for optical rectennas. Ph.D. Dissertation, University of Colorado, USA.Google Scholar
  9. 9.
    Zainud-Deen, S. H., Eltresy, N. A., Malhat, H. A., & Awadalla, K. H. (2015). Nano-dielectric resonator antenna reflectarray/transmittarray for terahertz applications. Advanced Electromagnetics, 4(1), 36–44.CrossRefGoogle Scholar
  10. 10.
    Malhat, H. A., Zainud-Deen, S. H., & Gaber, S. M. (2014). Graphene based transmitarray for terahertz applications. Progress in Electromagnetics Research M, PIER M, 36, 185–191.CrossRefGoogle Scholar
  11. 11.
    Schuhmann, R., Weiland, T., Schilders, W. H., Maten, E. J., & Houben, S. H. (2004). Recent advances in finite integration technique for high frequency applications. Scientific Computing in Electrical Engineering, 4, 46–57.CrossRefzbMATHGoogle Scholar
  12. 12.
    Rubinstein, R. Y., & Kroese, D. P. (2011). Simulation and the Monte Carlo method (2nd ed.). New York: Wiley.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Engineering and TechnologyBadr University in CairoCairoEgypt
  2. 2.Hydro-Power Plants Executive AuthorityMinistry of Electricity and EnergyCairoEgypt
  3. 3.Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations