Wireless Personal Communications

, Volume 107, Issue 1, pp 57–79 | Cite as

A Probability-Based Anti-Collision Protocol for RFID Tag Identification

  • Xinyu Liang
  • Yajun GuoEmail author


Anti-collision protocols have long been an important research field in RFID systems, and the collision tree (CT) protocol is very typical. Some researchers have improved CT to achieve better performance. However, these schemes still encounter the problem of too many collisions occurring at the beginning of the tags identification. In order to reduce the initial redundant collision, we propose a Probability-based Query Tree protocol (PQT). PQT divides all tags into several small subsets before the tags to be identified, and the protocol is composed of three parts: Inverse Probability Function (IPF), Total Time Slot Function (TTSF), and Mapping Table. The inverse probability function quantifies the possibility that a subset contains tags. The total time slot function measures the number of total time slots, and is used to obtain an optimal position to divide tags in the beginning. The mapping table is presented as an adaptive method in practical applications. In performance analysis, the identification efficiency of PQT is close to the optimal value. Simulation results further show that PQT outperforms the other existing anti-collision protocols.


RFID Tag identification Anti-collision 



  1. 1.
    Ahuja, S., & Potti, P. (2010). An introduction to RFID technology. Communications and Network, 2(3), 183–186.Google Scholar
  2. 2.
    Sarac, A., Absi, N., & Dauzère-Pérès, S. (2010). A literature review on the impact of RFID technologies on supply chain management. International Journal of Production Economics, 128(1), 77–95.Google Scholar
  3. 3.
    Liu, X., Li, K., Liu, A. X., Guo, S., Shahzad, M., Wang, A. L., et al. (2017). Multi-category RFID estimation. IEEE/ACM Transactions on Networking, 25(1), 264–277.Google Scholar
  4. 4.
    Zou, Y., Xiao, J., Han, J., Wu, K., Li, Y., & Ni, L. M. (2017). GRfid: A device-free RFID-based gesture recognition system. IEEE Transactions on Mobile Computing, 16(2), 381–393.Google Scholar
  5. 5.
    Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805.zbMATHGoogle Scholar
  6. 6.
    Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., et al. (2009). Building the Internet of Things using RFID the RFID ecosystem experience. IEEE Internet Computing, 13(3), 48–55.Google Scholar
  7. 7.
    Rennane, A., Saadi, H., Touhami, R., & Yagoub, M. C. E. (2012). A comparative performance evaluation study of the basic binary tree and aloha based anti-collision protocols for passive RFID system. In: Proceedings of 2012 24th international conference on microelectronics, Dec. 2012.Google Scholar
  8. 8.
    Namboodiri, V., DeSilva, M., Deegala, K., & Ramamoorthy, S. (2012). An extensive study of slotted Aloha-based RFID anti-collision protocols. Computer Communications, 35(16), 1955–1966.Google Scholar
  9. 9.
    Wu, H., & Zeng, Y. (2011). Efficient framed slotted aloha protocol for RFID tag anticollision. IEEE Transactions on Automation Science and Engineering, 8(3), 581–588.Google Scholar
  10. 10.
    Felemban, E. (2012). A revisit on modeling framed slotted aloha anti-collision protocol for RFID systems. In Proceedings of 2012 IEEE international conference on RFID-technologies and applications (pp. 315–318), Nov. 2012.Google Scholar
  11. 11.
    Wang, H., Xiao, S., Lin, F., Yang, T., & Yang, L. T. (2014). Group improved enhanced dynamic frame slotted ALOHA anti-collision algorithm. The Journal of Supercomputing, 69(3), 1235–1253.Google Scholar
  12. 12.
    Lee, C., & Lin, S. (2012). A double blocking dynamic framed slotted ALOHA anti-collision method for mobile RFID systems. In Proceedings of 2012 sixth international conference on genetic and evolutionary computing (pp. 581–584), Aug. 2012.Google Scholar
  13. 13.
    Zhu, L., & Yum, T. P. (2010). Optimal framed Aloha based anti-collision algorithms for RFID systems. IEEE Transactions on Communications, 58(12), 3583–3592.Google Scholar
  14. 14.
    Nithya, S., Jerlin, M. A., & Priya, S. (2013). Tag starvation and tag collisions in RFID system—A solution. International Journal of Engineering and Technology, 5(3), 2519–2522.Google Scholar
  15. 15.
    Jia, X., Feng, Q., & Yu, L. (2012). Stability analysis of an efficient anti-collision protocol for RFID tag identification. IEEE Transactions on Communications, 60(8), 2285–2294.Google Scholar
  16. 16.
    Ryu, J., Lee, H., Seok, Y., Kwon, T., & Choi, Y. (2007). A hybrid query tree protocol for tag collision arbitration in RFID systems. In IEEE international conference on communications (pp. 5981–5986).Google Scholar
  17. 17.
    Kim, Y., Kim, S., Lee, S., & Ahn, K. (2009). Improved 4-ary query tree algorithm for anti-collision in RFID system. In Proceedings of 2009 international conference on advanced information networking and applications (pp. 699–704), May. 2009.Google Scholar
  18. 18.
    Guo, Y., Li, S., Dou, J., & Zhou, S. (2016). Deterministic cloned tag detection protocol for anonymous radio-frequency identification systems. IET Information Security, 10(1), 28–32.Google Scholar
  19. 19.
    Moshref, M. (2017). Improved anti-collision algorithm for tag identification in future internet of things. International Journal of Computer Network and Information Security, 9(3), 11–20.Google Scholar
  20. 20.
    Wu, F., Xu, L., Kumari, S., Li, X., Das, A. K., & Shen, J. (2017). A lightweight and anonymous RFID tag authentication protocol with cloud assistance for e-healthcare applications. Journal of Ambient Intelligence and Humanized Computing, 2, 1–12.Google Scholar
  21. 21.
    Abdolmaleki, B., Baghery, K., Khazaei, S., & Aref, M. R. (2017). Game-based privacy analysis of RFID security schemes for confident authentication in IoT. Wireless Personal Communications, 6, 1–24.Google Scholar
  22. 22.
    Sun, H., Su, C., & Chen, S. P. (2018). A high security RFID system authentication protocol design base on cloud computer. Wireless Personal Communications, 102(2), 1255–1267.Google Scholar
  23. 23.
    Xiao, Q., Xiao, B., Chen, S., & Chen, J. (2017). Collision-aware churn estimation in large-scale dynamic RFID systems. IEEE/ACM Transactions on Networking, 25(1), 392–405.Google Scholar
  24. 24.
    Liu, X., Zhang, S., Xiao, B., & Bu, K. (2016). Flexible and time-efficient tag scanning with handheld readers. IEEE Transactions on Mobile Computing, 15(4), 840–852.Google Scholar
  25. 25.
    Xie, X., Liu, X., & Li, K. (2017). Minimal perfect hashing-based information collection protocol for RFID systems. IEEE Transactions on Mobile Computing, 16, 2792–2805.Google Scholar
  26. 26.
    Odelu, V., Das, A. K., & Goswami, A. (2016). SEAP: Secure and efficient authentication protocol for NFC applications using pseudonyms. IEEE Transactions on Consumer Electronics, 62(1), 30–38.Google Scholar
  27. 27.
    Bai, Z., He, Y., & Wang, S. (2014). Research of RFID tag anti-collision algorithm based on binary tree. Journal of Networks, 9(9), 2543–2548.Google Scholar
  28. 28.
    Chen, K., & Li, B. (2013). An improved query tree anti-collision algorithm using collision location. Research Journal of Applied Sciences, Engineering and Technology, 5(8), 2494–2498.Google Scholar
  29. 29.
    Landaluce, H., Perallos, A., Bengtsson, L., & Zuazola, I. J. G. (2014). Simplified computation in memoryless anti-collision RFID identification protocols. Electronics Letters, 50(17), 1250–1252.Google Scholar
  30. 30.
    Choi, S., Choi, J., & Yoo, J. (2012). An efficient anti-collision protocol for tag identification in RFID systems with capture effect. In Proceedings of 2012 fourth international conference on ubiquitous and future networks (pp. 482–483), Jul. 2012.Google Scholar
  31. 31.
    Jia, X., Feng, Q., Fan, T., & Lei, Q. (2012). Analysis of anti-collision protocols for RFID tag identification. In Proceedings of 2012 2nd international conference on consumer electronics, communications and networks (pp. 877–880), Apr. 2012.Google Scholar
  32. 32.
    Landuluce, H., Perallos, A., & Angulo, I. (2014). Managing the number of tag bits transmitted in a bit-tracking RFID collision resolution protocol. Sensors, 14(1), 1010–1027.Google Scholar
  33. 33.
    Lai, Y. C., Hsiao, L. Y., & Lin, B. S. (2015). Optimal slot assignment for binary tracking tree protocol in RFID tag identification. IEEE/ACM Transactions on Networking, 23(1), 255–268.Google Scholar
  34. 34.
    Pan, L., & Wu, H. (2011). Smart trend-traversal protocol for RFID tag arbitration. IEEE Transactions on Wireless Communications, 10(11), 3565–3569.Google Scholar
  35. 35.
    Guo, H., Leung, V. C. M., & Bolic, M. (2012). M-ary RFID tags splitting with small idle slots. IEEE Transactions on Automation Science and Engineering, 9(1), 177–181.Google Scholar
  36. 36.
    Shao, M., Jin, X., & Jin, L. (2014). An improved dynamic adaptive multi-tree search anti-collision algorithm based on RFID. In Proceedings of 2014 international conference on data science and advanced analytics (pp. 72–75), Nov. 2014.Google Scholar
  37. 37.
    Hush, D. R., & Wood, C. (1998). Analysis of tree algorithms for RFID arbitration. In Proceedings of the IEEE symposium on information theory (pp. 107–116), Aug. 1998.Google Scholar
  38. 38.
    Zhang, L., Zhang, J., & Tang, X. (2013). Assigned tree slotted Aloha RFID tag anti-collision protocols. IEEE Transactions on Wireless Communications, 12(11), 5493–5505.Google Scholar
  39. 39.
    Zhang, W., Guo, Y., Tang, X., Cui, G., Wu, L., & Mei, Y. (2013). An efficient adaptive anticollision algorithm based on 4-ary pruning query tree. International Journal of Distributed Sensor Networks, 9, 1–7.Google Scholar
  40. 40.
    Landaluce, H., Perallos, A., & Angulo, I. (2013). Influence of managing the number of tag bits transmitted on the query tree RFID collision resolution protocol. Journal of Communications Software and Systems, 9(1), 35.Google Scholar
  41. 41.
    Yan, X. Q., Liu, Y., Li, B., & Liu, X. M. (2015). A memoryless binary query tree based successive scheme for passive RFID tag collision resolution. Information Fusion, 22, 26–38.Google Scholar
  42. 42.
    Jayadi, R., Lai, Y., & Li, C. (2017). Efficient time-oriented anti-collision protocol for RFID tag identification. Computer Communications, 112, 141–153.Google Scholar
  43. 43.
    Bagheri, N., Alenaby, P., & Safkhani, M. (2017). A new anti-collision protocol based on information of collided tags in RFID systems. International Journal of Communication Systems, 30(3), e2975.Google Scholar
  44. 44.
    Fu, Y., Wang, X., Wang, E., & Qian, Z. (2017). A bit arbitration tree anti-collision protocol in radio frequency identification systems. International Journal of Distributed Sensor Networks, 13(11), 155014771774157.Google Scholar
  45. 45.
    Wei, W., Su, J., Song, H., Wang, H., & Fan, X. (2018). CDMA-based anti-collision algorithm for EPC global C1 Gen2 systems. Telecommunication Systems, 67(1), 63–71.Google Scholar
  46. 46.
    Cmiljanic, N., Landaluce, H., Perallos, A., & Arjona, L. (2017). Influence of the distribution of tag IDs on RFID memoryless anti-collision protocols. Sensors, 17(8), 1891.Google Scholar
  47. 47.
    Zhang, Y., Yang, F., Wang, Q., He, Q., Li, J., & Yang, Y. (2017). An anti-collision algorithm for RFID-based robots based on dynamic grouping binary trees. Computers & Electrical Engineering, 63, 91–98.Google Scholar
  48. 48.
    Chen, B., Zhou, Z., & Yu, H. (2016). Understanding RFID counting protocols. IEEE/ACM Transactions on Networking, 24(1), 312–327.Google Scholar
  49. 49.
    Shakiba, M., Singh, M. J., Sundararajan, E., Zawari, A., & Islam, M. T. (2014). Extending birthday paradox theory to estimate the number of tags in RFID systems. PLoS ONE, 9(4), e95425.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ComputerCentral China Normal UniversityWuhanChina

Personalised recommendations