Advertisement

Absorption Enhancement of GaAs Thin-Film Solar Cells Using Tapered Metal Nanoantenna Structures

  • Saber Helmy Zainud-Deen
  • Mina Dawoud
  • Hend Abd El-Azem MalhatEmail author
  • Mohamed A. Aboul-Dahab
Article
  • 59 Downloads

Abstract

This paper focuses on field absorption by metallic nanoantennas as a means to enhance light trapping into thin-film solar cells. It determines the optimum metal nanoantennas distribution for solar cell applications. The proposed structure takes into account the interactions between the nano-particles as well as including their interaction with the absorbing substrate. Tapered structure is proposed for absorption enhancement using different metal nanoantennas like gold, silver, copper and aluminium. The sizes of nanoantennas are tapered in one direction. The tapered structures are composed of an array of metal nanoantennas and the sizes are tapered using two different ways according to the tapering direction. The degree of tapering can be set by controlling a scaling element. All simulation data are obtained using the frequency domain finite element method. Larger than 20% increase in the absorption level can be achieved using the proposed structures.

Keywords

Solar-cell Absorption Plasmonic Nanoantennas 

Notes

References

  1. 1.
    Taghian, F., Ahmadi, V., & Yousefi, L. (2016). Enhanced thin solar cells using optical nano-antenna induced hybrid plasmonic travelling-wave. Journal of Lightwave Technology, 34(4), 1267–1273.CrossRefGoogle Scholar
  2. 2.
    Atwater, H. A., & Polman, A. (2010). Plasmonics for improved photovoltaic devices. Nature Materials, 9(3), 205–213.CrossRefGoogle Scholar
  3. 3.
    Guo, C. F., Sun, T., Cao, F., Liu, Q., & Ren, Z. (2014). Metallic nanostructures for light trapping in energy-harvesting devices. Light Science and Applications, 3(4), e161.CrossRefGoogle Scholar
  4. 4.
    Novitsky, A., Uskov, A. V., Gritti, C., Protsenko, I. E., Kardynał, B. E., & Lavrinenko, A. V. (2014). Photon absorption and photocurrent in solar cells below semiconductor bandgap due to electron photoemission from plasmonic nanoantennas. Progress in Photovoltaics Research and Applications, 22(4), 422–426.CrossRefGoogle Scholar
  5. 5.
    Derkacs, D., Lim, S. H., Matheu, P., Mar, W., & Yu, E. T. (2006). Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoantennas. Applied Physics Letters, 89(9), 093103.CrossRefGoogle Scholar
  6. 6.
    Pillai, S., Catchpole, K. R., Trupke, T., & Green, M. A. (2007). Surface plasmon enhanced silicon solar cells. Journal of Applied Physics, 101(9), 093105.CrossRefGoogle Scholar
  7. 7.
    Yeo, J., & Kim, D. (2009). Novel tapered AMC structures for backscattered RCS reduction. Journal of Electromagnetic Waves and Applications, 5–6, 697–709.CrossRefGoogle Scholar
  8. 8.
    Fischer, H., & Martin, O. J. (2008). Engineering the optical response of plasmonic nanoantennas. Optics express, 16(12), 9144–9154.CrossRefGoogle Scholar
  9. 9.
    Sanders, A. W. Optical properties of metallic nanostructures. Yale University, 2007.Google Scholar
  10. 10.
    Medhat, M., El-Batawy, Y. M., Abdelmageed, A. K. & Soliman, E. A. Gear nano antenna for plasmonic photovoltaic. In: Antennas and Propagation (MECAP), 2016 IEEE Middle East Conference on, pp. 1–4, 2016.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Engineering and TechnologyBadr Universityin CairoEgypt
  2. 2.Arab Academy for Science, Technology and Maritime Transport (AASTMT)CairoEgypt
  3. 3.Higher Technological InstituteTenth of RamadanEgypt
  4. 4.Faculty of Electronic Engineering, Menoufia UniversityMenoufEgypt

Personalised recommendations