Where Multiple Connectivity Brings Offloading Performance Boost? An Analytical Study

  • Seyed Mehdi Hosseini
  • Mehri MehrjooEmail author
  • Hamidreza Amindavar


Recently multiple radio access technology (M-RAT) has been suggested as a solution to provide the currently congested wireless consumers with higher throughput and therefore improved performance mainly through offloading cellular traffic to alternative networks such as WiFi and femtocell. In this paper, we investigate analytically where M-RAT can accomplish this task. Specifically, a throughput comparison will be made between those users, who can benefit from M-RAT capability and those who cannot. More specifically, we consider three important scenarios: (1) simultaneous connection to WiFi and macrocell, (2) simultaneous connections to two macrocells, and (3) simultaneous connection to WiFi and femtocell. The main results of the analysis reveal that multiple connection capability improves the performance by increasing multiplexing gain, mostly observable when cells with access point of comparable size overlap completely.


Multiple radio access technology Multiple connectivity WiFi Cellular Femtocell Data offloading 



  1. 1.
    White Paper, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021.
  2. 2.
    Aijaz, A., Aghvami, H., & Amani, M. (2013). A survey on mobile data offloading: technical and business perspectives. IEEE Wireless Communications, 20(April), 104–112.CrossRefGoogle Scholar
  3. 3.
    Amani, M., Mahmoodi, T., Tatipamula, M., & Aghvami, H. (2014). SDN-based data offloading for 5G mobile networks. ZTE Communications, 2, 009.Google Scholar
  4. 4.
    Lee, K., Lee, J., Yi, Y., Rhee, I., & Chong, S. (2013). Mobile data offloading: How much can WiFi deliver? IEEE/ACM Transactions on Networking, 21(2), 536–550.CrossRefGoogle Scholar
  5. 5.
    He, Y., Chen, M., Ge, B., & Guizani, M. (2016). On WiFi offloading in heterogeneous networks: Various incentives and trade-off strategies. IEEE Communications Surveys and Tutorials, 18(4), 2345–2385.Google Scholar
  6. 6.
    Mehmeti, F., & Spyropoulos, T. (2016). Performance analysis of mobile data offloading in heterogeneous networks. IEEE Transactions on mobile computing, 16(2), 482–497.CrossRefGoogle Scholar
  7. 7.
    Rebecchi, F., Amorim, M. D., Conan, V., Passarella, A., Bruno, R., & Conti, M. (2015). Data offloading techniques in cellular networks: A survey. IEEE Communications Surveys and Tutorials, 17(2), 580–603.CrossRefGoogle Scholar
  8. 8.
    White paper. (2013). OUTLOOK, visions and research directions for the wireless world: Multi-rat network architecture.
  9. 9.
    Sharafeddine, S., Jahed, K., Abbas, N., Yaacoub, E., & Dawy, Z. (2013). Exploiting multiple wireless interfaces in smartphones for traffic offloading. In Black Sea Conference on Communications and Networking (BlackSeaCom), pp. 142–146, July 2013.Google Scholar
  10. 10.
    Weihua, W., Yang, Q., Gong, P., & Kwak, K. S. (2017). Energy-efficient traffic splitting for time-varying multi-RAT wireless networks. IEEE Transactions on Vehicular Technology. Scholar
  11. 11.
    Galinina, O., Pyattaev, A., Andreevy, S., Dohler, M., & Koucheryavy, Y. (2015). 5G multi-RAT LTE-WiFi ultra-dense small cells: Performance dynamics, architecture, and trends. IEEE Journal on Selected Areas in Communications, 33(6), 1224–1240.CrossRefGoogle Scholar
  12. 12.
    Yu, G., Jiang, Y., Xu, L., & Li, G. Y. (2015). Multi-objective energy-efficient resource allocation for multi-RAT heterogeneous networks. IEEE Journal on Selected Areas in Communications, 33(10), 21182127.CrossRefGoogle Scholar
  13. 13.
    Zhang, H., Chu, X., Guo, W., & Wang, S. (2015). Coexistence of Wi-Fi and heterogeneous small cell networks sharing unlicensed spectrum. IEEE Communications Magazine, 53(3), 158–164.CrossRefGoogle Scholar
  14. 14.
    Ibrahim, A. S., Darwish, A. M., Elbassiouny, S. O., & Elgebaly, H. (2013). QoS-aware traffic offloading in 4G/WiFi multi-RAT heterogeneous networks: Opnet-based simulations and real prototyping implementation, ICWMC, pp.82–89, July 2013.Google Scholar
  15. 15.
    Gustafsson, E., & Jonsson, A. (2003). Always best connected. IEEE Wireless. Communication, 10(1), 49–55.CrossRefGoogle Scholar
  16. 16.
    Singh, S., Geraseminko, M., Yeh, S., Himayat, N., & Talwar, S. Proportional fair traffic splitting and aggregation in heterogeneous wireless networks. Scholar
  17. 17.
    Singh, S., Yeh, S., Himayat, N., & Talwar, S. (2016). Optimal traffic aggregation in multi-RAT heterogeneous wireless networks. In Proceedings of the IEEE International Conference on Communications Workshops (ICC’16), pp. 626–631, Kuala Lumpur, Malaysia, May 2016.Google Scholar
  18. 18.
    Elkourdi, T.,Chincholi, A., Le T., & Demir, A. (2015). Cross-layer optimization for opportunistic multi-MAC aggregation.In Proceedings IEEE Vehicular Technology (VTC Spring), pp. 1–5, June 2013.Google Scholar
  19. 19.
    Goyal, S., Le, T., Chincholi, A., Elkourdi, T., Demir, A. (2015) On the packet allocation of multi-band aggregation wireless networks. Submitted.
  20. 20.
    Seong, H. C., Hong, J. P., & Choi, W. (2016). Optimal access in OFDMA Multi-RAT cellular networks with stochastic geometry: Can a single RAT be better? IEEE Transactions on Wireless Communications, 15(7), 4778–4789.Google Scholar
  21. 21.
    Krishnamoorthy, K. (2006). Handbook of statistical distributions with applications. LLC: Taylor and Francis Group.CrossRefzbMATHGoogle Scholar
  22. 22.
    Bianchi, G. (1998). IEEE 802.11—saturation throughput analysis. IEEE Communications Letters, 2, 318–320.CrossRefGoogle Scholar
  23. 23.
    Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordinated function. IEEE Journal on selected areas in communications (JSAC), 18(3), 535–547.CrossRefGoogle Scholar
  24. 24.
    P. Kirby (2014), Properties of Functions, lecture notes on Discrete Mathematics.
  25. 25.
    Tesler, G. (2013). The Maximum of n random variables, hypothesis testing, long repeats of the same nucleotide, lecture notes on statistical methods in bioinformatics.
  26. 26.
    Pauli, Volker, & Seidel, Eiko. (2010). ‘Inter-Cell Interference Coordination for LTE-A’. Munich: Nomor Research GmbH.Google Scholar
  27. 27.
    Abramowitz, M., & Stegun, I. (1970). Handbook of mathematical functions. New York: Dover.zbMATHGoogle Scholar
  28. 28.
    Cover, T. M., & Thomas, J. A. (1991). Elements of Information theory. New York: Wiley.CrossRefzbMATHGoogle Scholar
  29. 29.
    Richards, D. (2002). Advanced mathematical methods with maple. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  30. 30.
    Maple release 18. MapleSoft, a division of Waterloo Maple Inc., Waterloo, Ontario.Google Scholar
  31. 31.
    Andrews, J. G., Singh, S., Ye, Q., Lin, X., & Dhillon, H. S. (2014). An overview of load balancing in HetNets: Old myths and open problems. IEEE Wireless Communications magazine, 21(2), 18–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.University of Sistan and BaluchestanZahedanIran
  2. 2.Department of TelecommunicationsUniversity of Sistan and BaluchestanZahedanIran
  3. 3.Electrical Engineering DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations