An Ultra-Thin, Bandwidth Enhanced Metamaterial Absorber for X-Band Applications

  • S. RamyaEmail author
  • I. Srinivasa Rao


A simple metamaterial absorber with ultra-thin structure has been proposed for X-band applications with enhanced absorption bandwidth. The proposed structure comprises of circular rings embedded in L-shaped resonators. This ultra-thin structure (0.0420λ0 thick with respect to the center frequency of the operating bandwidth) exhibits wide absorption of 2.3 GHz above 90% absorptivity from 9.4 to 11.7 GHz. The designed structure was tested for different polarization for transverse electric mode under normal and oblique angles of electromagnetic wave incidence. It is polarization sensitive because of its asymmetrical design, and has diverse impacts on absorption at various incidence angles. The electromagnetic fields and surface current distributions were analysed to understand the high absorption of the presented metamaterial absorber. The proposed structure has been fabricated and the experimental responses were matched closely with the simulated responses. This metamaterial absorber will be suitable for applications like stealth technology in X-band frequencies.


Microwave absorber Metamaterial Wideband absorber Ultra-thin 



We thank Dr. P. Mohanan, Department of Electronics, Cochin University of Science and Technology for the laboratory facility to perform the experimental measurements.


  1. 1.
    Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C., & Schultz, S. (2000). Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters, 84, 4184.CrossRefGoogle Scholar
  2. 2.
    Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letters, 100, 207402.CrossRefGoogle Scholar
  3. 3.
    Bilotti, F., Nucci, L., & Vegni, L. (2006). An SRR based microwave absorber. Microwave and Optical Technology Letters, 48, 2171–2175.CrossRefGoogle Scholar
  4. 4.
    Li, L. W., Li, Y. N., Yeo, T. S., Mosig, J. R., & Martin, O. J. (2010). A broadband and high-gain metamaterial microstrip antenna. Applied Physics Letters, 96, 164101.CrossRefGoogle Scholar
  5. 5.
    Arora, Chirag, Pattnaik, Shyam S., & Baral, R. N. (2017). Performance enhancement of patch antenna array for 5.8 GHz Wi-MAX applications using metamaterial inspired technique. International Journal of Electronics and Communications, 79, 124–131.CrossRefGoogle Scholar
  6. 6.
    Cai, W., Chettiar, U. K., Kildishev, A. V., & Shalaev, V. M. (2007). Optical cloaking with materials. Nature photonics, 1, 224–227.CrossRefGoogle Scholar
  7. 7.
    Li, H., Yuan, L. H., Zhou, B., Shen, X. P., Cheng, Q., & Cui, T. J. (2011). Ultrathin multiband gigahertz metamaterial absorbers. Journal of Applied Physics, 110, 014909.CrossRefGoogle Scholar
  8. 8.
    Zhang, N., Zhou, P., Cheng, D., Weng, X., Xie, J., & Deng, L. (2013). Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers. Optics Letters, 38, 1125–1127.CrossRefGoogle Scholar
  9. 9.
    Tao, H., Landy, N. I., Bingham, C. M., Zhang, X., Averitt, R. D., & Padilla, W. J. (2008). A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Optics Express, 16, 7181–7188.CrossRefGoogle Scholar
  10. 10.
    Soheilifar, M. R., Sadeghzadeh, R. A., & Gobadi, H. (2014). Design and fabrication of a metamaterial absorber in the microwave range. Microwave and Optical Technology Letters, 56, 1748–1752.CrossRefGoogle Scholar
  11. 11.
    Ni, B., Chen, X. S., Huang, L. J., Ding, J. Y., Li, G. H., & Lu, W. (2013). A dual-band polarization insensitive metamaterial absorber with split ring resonator. Optical and Quantum Electronics, 45, 747–753.CrossRefGoogle Scholar
  12. 12.
    Ramya, S., & Rao, I. S. (2016). Design of polarization-insensitive dual band metamaterial absorber. Progress In Electromagnetics Research M, 50, 23–31.CrossRefGoogle Scholar
  13. 13.
    Yoo, Y. J., Kim, Y. J., Hwang, J. S., Rhee, J. Y., Kim, K. W., Kim, Y. H., et al. (2015). Triple-band perfect metamaterial absorption, based on single cut-wire bar. Applied Physics Letters, 106, 071105.CrossRefGoogle Scholar
  14. 14.
    Bhattacharya, A., Bhattacharyya, S., Ghosh, S., Chaurasiya, D., & Vaibhav Srivastava, K. (2015). An ultrathin penta-band polarization-insensitive compact metamaterial absorber for airborne radar applications. Microwave and Optical Technology Letters, 57, 2519–2524.CrossRefGoogle Scholar
  15. 15.
    Lee, J., & Lim, S. (2011). Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance. Electronics Letters, 47, 8–9.CrossRefGoogle Scholar
  16. 16.
    Bhattacharyya, S., Ghosh, S., Chaurasiya, D., & Srivastava, K. V. (2015). Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Applied Physics A, 118, 207–215.CrossRefGoogle Scholar
  17. 17.
    Li, L., Wang, J., Du, H., Wang, J., Qu, S., & Xu, Z. (2015). A band enhanced metamaterial absorber based on E-shaped all-dielectric resonators. AIP Advances, 5, 017147.CrossRefGoogle Scholar
  18. 18.
    Sood, D., & Tripathi, C. C. (2016). A wideband wide-angle ultrathin low profile metamaterial microwave absorber. Microwave and Optical Technology Letters, 58, 1131–1135.CrossRefGoogle Scholar
  19. 19.
    Ramya, S., & Srinivasa Rao, I. (2017). A compact ultra-thin ultrawideband microwave metamaterial absorber. Microwave and Optical Technology Letters, 59, 1837–1845.CrossRefGoogle Scholar
  20. 20.
    Zhou, W., Wang, P., Wang, N., Jiang, W., Dong, X., & Hu, S. (2015). Microwave metamaterial absorber based on multiple square ring structures. AIP Advances, 5, 117109.CrossRefGoogle Scholar
  21. 21.
    Agarwal, M., Behera, A. K., & Meshram, M. K. (2016). Wide-angle quad-band polarisation-insensitive metamaterial absorber. Electronics Lett, 52, 340–342.CrossRefGoogle Scholar
  22. 22.
    Ghosh, S., Bhattacharyya, S., Kaiprath, Y., & Vaibhav Srivastava, K. (2014). Bandwidth-enhanced polarization-insensitive microwave metamaterial absorber and its equivalent circuit model. Journal of Applied Physics, 115, 104503.CrossRefGoogle Scholar
  23. 23.
    Zhai, H., Zhan, C., Li, Z., & Liang, C. (2015). A triple-band ultrathin metamaterial absorber with wide-angle and polarization stability. IEEE Antennas and Wireless Propagation Letters, 14, 241–244.CrossRefGoogle Scholar
  24. 24.
    Sood, D., & Tripathi, C. C. (2015). A wideband ultrathin low profile metamaterial microwave absorber. Microwave and Optical Technology Letters, 57, 2723–2728.CrossRefGoogle Scholar
  25. 25.
    Agarwal, M., Behera, A. K., & Meshram, M. K. (2016). Dual resonating C-band with enhanced bandwidth and broad X-band metamaterial absorber. Applied Physics A, 122, 1–9.Google Scholar
  26. 26.
    Sood, D., & Tripathi, C. C. (2016). Broadband ultrathin low-profile metamaterial microwave absorber. Applied Physics A, 122, 1–7.CrossRefGoogle Scholar
  27. 27.
    Sood, D., & Tripathi, C. C. (2017). A compact ultrathin ultra-wideband metamaterial microwave absorber. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 16, 514–528.CrossRefGoogle Scholar
  28. 28.
    Xu, G., Huang, J., Ju, Z., Wei, Z., Li, J., & Zhao, Q. (2017). A novel six-band polarization-insensitive metamaterial absorber with four multiple-mode resonators. Progress In Electromagnetics Research C, 77, 133–144.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronics EngineeringVIT UniversityVelloreIndia

Personalised recommendations