Advertisement

A Thermal Aware Routing Algorithm for a Wireless Body Area Network

  • K. S. KatheEmail author
  • U. A. Deshpande
Article

Abstract

Implanted biological sensors in an in-vivo Wireless Body Area Network (WBAN) have a wide range of medical applications. However, such sensors generate heat while sensing or communicating data to the sink node or the base station. A rise in the temperature of a sensor node above a threshold may damage the surrounding tissues. In this paper, we propose a thermal aware routing algorithm that considers the priority of the data to be sent while maintaining the temperature within a permissible limit. The empirical studies show that the proposed routing algorithm achieves a higher packet delivery ratio and lower delivery latency as compared to the existing routing algorithms for Body Area Networks. It is also evident from the experimental analysis that the proposed algorithm ensures that more number of high priority packets reach the sink node. Moreover, the proposed algorithm has a uniform temperature distribution. The algorithmic procedure is designed in such a way that less number of the nodes are made hotspot nodes.

Keywords

ALTR (adaptive least temperature routing) In-vivo In-vitro LTR (least temperature routing) LTRT (least total-route-temperature) TARA (thermal aware routing algorithm) WBAN WSN (wireless sensor network) 

Notes

References

  1. 1.
    Ababneh, N., Timmons, N., Morrison, J., & Tracey, D. (2012). Energy-balanced rate assignment and routing protocol for body area networks. In 26th International conference on advanced information networking and applications workshops, Fukuoka, Japan (pp. 466–471). IEEE.Google Scholar
  2. 2.
    Akkaya, K., & Younis, M. (2005). A survey on routing protocols for wireless sensor networks. Ad Hoc Networks, 3(3), 325–349.Google Scholar
  3. 3.
    Bag, A., & Bassiouni, M. A. (2006). Energy efficient thermal aware routing algorithms for embedded biomedical sensor networks. In IEEE international conference on mobile Adhoc and sensor systems (MASS), Vancouver, BC, Canada (pp. 604–609). IEEE.Google Scholar
  4. 4.
    Bag, A., & Bassiouni, M. A. (2007). Hotspot preventing routing algorithm for delay sensitive biomedical sensor networks. In IEEE international conference on portable information devices (PORTABLE07), Orlando, FL, USA (pp. 1–5). IEEE.Google Scholar
  5. 5.
    Caldeira, J. M. L. P., Rodrigues, J. J. P. C., Garcia, J. F. R., & de la Torre, I. (2010). A new wireless biosensor for intra-vaginal temperature monitoring. Sensors (Basel), 10(11), 10314–10327.Google Scholar
  6. 6.
    Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193.Google Scholar
  7. 7.
    Demir, S. M., Al-Turjman, F., & Muhtaroglu, A. (2018). Energy scavenging methods for WBAN applications: A review. IEEE Sensors Journal, 18, 6477–6488.Google Scholar
  8. 8.
    Dewhirst, M. W., Viglianti, B. L., Lora-Michiels, M., Hoopes, P. J., & Hanson, M. A. (2003). Thermal dose requirement for tissue effect: Experimental and clinical findings. In Proceedings of SPIE-the international society for optical engineering, volume 4954 of 37.Google Scholar
  9. 9.
    Ha, I. (2015). Technologies and research trends in wireless body area networks for healthcare: A systematic literature review. International Journal of Distributed Sensor Networks - Special issue on Advances in Multimedia Sensor Networks for Health-Care and Related Applications, 4, 573538.Google Scholar
  10. 10.
    Hamalainen, M., & Li, X. (2017). Recent advances in body area network technology and applications. International Journal of Wireless Information Networks, 24(2), 63–64.Google Scholar
  11. 11.
    Hamalainen, M., Taparugssanagorn, A., & Iinatti, J. (2011). On the WBAN radio channel modelling for medical applications. In Proceedings of the 5th European conference on antennas and propagation (EUCAP), Rome, Italy (pp. 2967 – 2971). IEEE.Google Scholar
  12. 12.
    Hanson, M. A., Powell, H. C. P, Jr., Barth, A. T., Ringgenberg, K., Calhoun, B. H., Aylor, J. H., et al. (2009). Body aArea sensor networks: Challenges and opportunities. Computer, 42(1), 58–65.Google Scholar
  13. 13.
    Hu, F., Liu, X., Shao, M., Sui, D., & Wang, L. (2017). Wireless energy and information transfer in WBAN: An overview. IEEE Network, 31(3), 90–96.Google Scholar
  14. 14.
    Latre, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Journal of Wireless Networks, 17(1), 1–18.Google Scholar
  15. 15.
    Li, C., Li, H.-B., Kohno, R., & (2009). Performance evaluation of IEEE 802.15.4 for wireless body area network (WBAN). In 2009 IEEE International conference on communications workshops, Dresden, Germany. IEEE.Google Scholar
  16. 16.
    Lin, C.-T., Chuang, C.-H., Huang, C.-S., Tsai, S.-F., Lu, S.-W., Chen, Y.-H., et al. (2014). Wireless and wearable EEG system for evaluating driver vigilance. IEEE Transactions on Biomedical Circuits and Systems, 8(2), 165–176.Google Scholar
  17. 17.
    Negra, R., Jemili, I., & Belghith, A. (2016). Wireless body area networks: Applications and technologies. Procedia Computer Science, 83, 1274–1281.Google Scholar
  18. 18.
    Omeni, O., Wong, A. C. W., Burdett, A. J., & Toumazou, C. (2008). Energy efficient medium access protocol for wireless medical body area sensor networks. IEEE Transactions on Biomedical Circuits and Systems, 2(4), 251–259.Google Scholar
  19. 19.
    Saleem, K., Abbas, H., Al-Muhtadi, J., Orgun, M. A., Shankaran, R., Zhang, G. (2016). Empirical studies of ECG multiple fiducial-points based binary sequence generation (MFBSG) algorithm in E-health sensor platform. In 2016 IEEE 41st conference on local computer networks workshops (LCN Workshops), Dubai, United Arab Emirates. IEEE.Google Scholar
  20. 20.
    Samanta, A., & Misra, S. (2018). Dynamic connectivity establishment and cooperative scheduling for QoS-aware wireless body area networks. IEEE Transactions on Mobile Computing, 17, 2775–2788.Google Scholar
  21. 21.
    Schwiebert, L., Gupta, S., Auner, P., Abrams, G., Iezzi, R., & McAllister, P. (2002). A biomedical smart sensor for visually impaired. IEEE Sensors, 1, 693–698.Google Scholar
  22. 22.
    Schwiebert, L., Gupta, S. K., & Weinmann, J. (2001). Research challenges in wireless networks of biomedical sensors. In Proceedings of the 7th annual international conference on mobile computing and networking (MobiCom ’01), Rome, Italy (pp.151–165).Google Scholar
  23. 23.
    Sonawane, P. D., & Sutar, R. G. (2017). A schematic review on body area networks for E-health systems. In 2017 International conference on intelligent computing and control (I2C2), Coimbatore, India. IEEE.Google Scholar
  24. 24.
    Sund-Levander, M., Forsberg, C., & Wahren, L. (2002). Normal oral, rectal, tympanic and axillary body temperature in adult men and women: A systematic literature review. Scandinavian Journal of Caring Sciences, 16(2), 122–8.Google Scholar
  25. 25.
    Takahashi, D., Xiao, Y., & Hu, F. (2007). LTRT: Least total-route temperature routing for embedded biomedical sensor networks. In IEEE global telecommunications conference (GLOBECOM ’07), Washington, DC, USA (pp. 641–645). IEEE.Google Scholar
  26. 26.
    Tang, Q., Tummala, N., Gupta, S. K. S., & Schwiebert, L. (2005). TARA: Thermal-aware routing algorithm for implanted sensor networks. In Proceedings of intl. conference on distributed computing in sensor systems (DCOSS) (Vol. 3560, pp. 206–217). Berlin, Heidelberg: Springer.Google Scholar
  27. 27.
    Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36(3), 1065–1094.Google Scholar
  28. 28.
    Wang, H., Peng, D., Wang, W., Sharif, H., hwa Chen, H., & Khoynezhad, A. (2010). Resource-aware secure ECG healthcare monitoring through body sensor networks. IEEE Wireless Communications, 17(1), 12–19.Google Scholar
  29. 29.
    Yang, G.-Z., Aziz, O., Kwasnicki, R., Merrifield, R., Darzi, A., & Lo, B. (2014). Body sensor networks (2nd ed.). London: Springer.Google Scholar
  30. 30.
    Yang, S., Lu, J.-L., Kong, L., Shu, W., & Wu, M.-Y. (2013). Poster: Behavior-aware probabilistic routing for wireless body area sensor networks. In 2013 IEEE conference on computer communications workshops (INFOCOM WKSHPS), Turin, Italy. IEEE.Google Scholar
  31. 31.
    Yarmolenko, P. S., Moon, E. J., Landon, C., Manzoor, A., Hochman, D. W., Viglianti, B. L., et al. (2011). Thresholds for thermal damage to normal tissues: An update. International Journal of Hyperthermia, 27(4), 320–343.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Railway Information SystemChanakyapuriIndia
  2. 2.Department of Computer Science and EngineeringVisvesvaraya National Institute of TechnologyNagpurIndia

Personalised recommendations