Fuzzy Genetic Elliptic Curve Diffie Hellman Algorithm for Secured Communication in Networks

  • Priya SethuramanEmail author
  • P. S. Tamizharasan
  • Kannan Arputharaj


More computations have to be done through less powerful mobile devices which includes ultra modern wearables. The huge overhead lies in the processing of the humongous key space each and computation of the intelligible message. The uniqueness of the elliptic curve cryptography (ECC) lies in the processing of data using shorter keys which are capable to achieve the performance of long key requirement of RSA. In order to reduce the overhead involved in the computation of less powerful mobile devices the fuzzy genetic elliptic curve Diffie Hellman is proposed in this paper. The intelligent rules are used for ranking during key selection process, multi attribute decision making model with fuzzy reasoning for obtaining keys and genetic algorithms for effective optimization of computation in ECC contributes to obtain the proposed FGECDH algorithm.





  1. 1.
    Bogdanov, A., Knudsen, L. R., Leander, G., Standaert, F. X., Steinberger, J., & Tischhauser, E. (2012). Key-alternating ciphers in a provable setting: Encryption using a small number of public permutations. In D. Pointcheval & T. Johansson (Eds.), Annual international conference on the theory and applications of cryptographic techniques (Vol. 7237, pp. 45–62). Berlin, Heidelberg: Springer.Google Scholar
  2. 2.
    Libert, B., Peters, T., Joye, M., & Yung, M. (2015). Linearly homomorphic structure-preserving signatures and their applications. Designs, Codes and Cryptography, 77(2–3), 441–477.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Zadeh, L. A. (2012). Computing with words: Principal concepts and ideas (Vol. 277). Berlin: Springer.CrossRefzbMATHGoogle Scholar
  4. 4.
    Lin, F.-T., & Kao, C.-Y. (1995). A genetic algorithm for ciphertext-only attack in cryptanalysis. In Systems, man and cybernetics, 1995. Intelligent systems for the 21st century, IEEE international conference on (Vol. 1, pp. 650–654). IEEE.Google Scholar
  5. 5.
    Faugère, J.-C., Perret, L., Petit, C., & Renault, G. (2012). Improving the complexity of index calculus algorithms in elliptic curves over binary fields. In D. Pointcheval & T. Johansson (Eds.), Annual international conference on the theory and applications of cryptographic techniques (Vol. 7237, pp. 27–44). Berlin, Heidelberg: Springer.Google Scholar
  6. 6.
    Rivest, R. L., Shamir, A., & Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120–126.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Needham, R. M., & Schroeder, M. D. (1978). Using encryption for authentication in large networks of computers. Communications of the ACM, 21(12), 993–999.CrossRefzbMATHGoogle Scholar
  8. 8.
    Seredynski, F., Bouvry, P., & Zomaya, A. Y. (2004). Cellular automata computations and secret key cryptography. Parallel Computing, 30(5), 753–766.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bhasin, H. (2012). Corpuscular random number generator. International Journal of Information and Electronics Engineering, 2(2), 197.Google Scholar
  10. 10.
    Burke, L. (1999). A review of optimization in operations research Ronald L. Rardin Prentice-Hall, 1998, 919pp, ISBN 0-02-398415-5. Iie Transactions, 31(3), 279–280.CrossRefGoogle Scholar
  11. 11.
    Goldberg, D. (1989). Genetic algorithms in search. Optimization, and Machine Learning.Google Scholar
  12. 12.
    Ruttor, A., Kinzel, W., Naeh, R., & Kanter, I. (2006). Genetic attack on neural cryptography. Physical Review E, 73(3), 036121.CrossRefGoogle Scholar
  13. 13.
    Khan, F. U., & Bhatia, S. (2012). A novel approach to genetic algorithm based cryptography. International Journal of Research in Computer Science, 2(3), 7.CrossRefGoogle Scholar
  14. 14.
    Holland, J. H., & Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA: Addison-Wesley.Google Scholar
  15. 15.
    Stein, G., Chen, B., Wu, A. S., & Hua, K. A. (2005). Decision tree classifier for network intrusion detection with GA-based feature selection. In Proceedings of the 43rd annual Southeast regional conference (Vol. 2, pp. 136–141). ACM.Google Scholar
  16. 16.
    Kaya, Y., Uyar, M., et al. (2011). A novel crossover operator for genetic algorithms: Ring crossover. arXiv preprint arXiv:1105.0355.
  17. 17.
    Picek, S., & Golub, M. (2010). Comparison of a crossover operator in binary-coded genetic algorithms. WSEAS Transactions on Computers, 9, 1064–1073.Google Scholar
  18. 18.
    Jhingran, R., Thada, V., & Dhaka, S. (2015). A study on cryptography using genetic algorithm. International Journal of Computer Applications, 118(20), 10–14.CrossRefGoogle Scholar
  19. 19.
    Ma, Z., & Zeng, S. (2014). Confidence intuitionistic fuzzy hybrid weighted operator and its application in multi-criteria decision making. Journal of Discrete Mathematical Sciences and Cryptography, 17(5–6), 529–538.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zimmermann, H.-J. (2011). Fuzzy set theory and its applications. Berlin: Springer.Google Scholar
  21. 21.
    Ganapathy, Sethukkarasi, Sethukkarasi, R., Yogesh, P., Vijayakumar, P., & Kannan, A. (2014). An intelligent temporal pattern classification system using fuzzy temporal rules and particle swarm optimization. Sadhana, 39(2), 283–302.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Selvi, M., Logambigai, R., Ganapathy, S., Ramesh, L. S., Nehemiah, H. K., & Arputharaj, K. (2016). Fuzzy temporal approach for energy efficient routing in WSN. In Proceedings of the international conference on informatics and analytics (p. 117). ACM.Google Scholar
  23. 23.
    Selvi, M., Logambigai, R., Ganapathy, S., Nehemiah, H. K., & Arputharaj, K. (2017). An intelligent agent and FSO based efficient routing algorithm for wireless sensor network. In Recent trends and challenges in computational models (ICRTCCM), 2017 second international conference on (pp. 100–105). IEEE.Google Scholar
  24. 24.
    Ganapathy, S., Kulothungan, K., Yogesh, P., & Kannan, A. (2012). A novel weighted fuzzy C-means clustering based on immune genetic algorithm for intrusion detection. Procedia Engineering, 38, 1750–1757.CrossRefGoogle Scholar
  25. 25.
    Baas, S. M., & Kwakernaak, H. (1977). Rating and ranking of multiple-aspect alternatives using fuzzy sets. Automatica, 13(1), 47–58.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Zadeh, L. A. (1998). Roles of soft computing and fuzzy logic in the conception, design and deployment of information/intelligent systems. In O. Kaynak, L. A. Zadeh, B. Türkşen & I. J. Rudas (Eds.), Computational intelligence: Soft computing and fuzzy-neuro integration with applications (pp. 1–9). Berlin, Heidelberg: SpringerGoogle Scholar
  27. 27.
    Logambigai, R., Ganapathy, S., & Kannan, A. (2018). Energy-efficient grid-based routing algorithm using intelligent fuzzy rules for wireless sensor networks. Computers & Electrical Engineering, 68, 62–75.CrossRefGoogle Scholar
  28. 28.
    Mihret, Z., & Ahmad, M. W. (2016). The reverse engineering of reverse encryption algorithm and a systematic comparison to DES. Procedia Computer Science, 85, 558–570.CrossRefGoogle Scholar
  29. 29.
    Riyaldhi, R., Kurniawan, A., et al. (2017). Improvement of advanced encryption standard algorithm with shift row and S. box modification mapping in mix column. Procedia Computer Science, 116, 401–407.CrossRefGoogle Scholar
  30. 30.
    Tang, H., Sun, Q. T., Yang, X., & Long, K. (2018). A network coding and DES based dynamic encryption scheme for moving target defense. IEEE Access, 6, 26059–26068.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Priya Sethuraman
    • 1
    Email author
  • P. S. Tamizharasan
    • 2
  • Kannan Arputharaj
    • 3
  1. 1.Anna UniversityChennaiIndia
  2. 2.Department of Information TechnologyJerusalem College of EngineeringChennaiIndia
  3. 3.Department of ISTAnna UniversityChennaiIndia

Personalised recommendations