Advertisement

Adaptive Technique with Cross Correlation for Lowering Signal-to-Noise Ratio Wall in Sensor Networks

  • Rajiv Kapoor
  • Rashmi Gupta
  • Le Hoang SonEmail author
  • Sudan Jha
  • Raghvendra Kumar
Article
  • 23 Downloads

Abstract

Energy detection is considered as most popular spectrum sensing technique. However, the impact of noise uncertainty in wireless environment limits the sensitivity of energy-based detector. It generally suffers from Signal-to-Noise Ratio (SNR) wall, which is defined as the minimum SNR in which robust detection is not possible. This paper presents an adaptive technique to improve SNR wall in sensor networks that combines cross-correlation scheme and dynamic threshold method to improve performance. An analytical expression of SNR wall is derived to show improved performance over traditional energy detector. Theoretical analyses and simulations validate effectiveness of the proposed method under noise uncertainty environment.

Keywords

Adaptive threshold Cognitive radio Cross-correlation Power recognition Noise uncertainty parameters Signal-to-noise ratio wall 

Notes

References

  1. 1.
    Ali, K. A., Rehmani, H., & Reisslein, M. (2016). Cognitive radio for smart grids: Survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Communications Surveys & Tutorials, 18(1), 860–898.Google Scholar
  2. 2.
    Ali, G., Qaraqe, K., Celebi H. &Arslan H. (2010) An adaptive threshold method for spectrum sensing in multi-channel cognitive radio networks. In 2010 IEEE 17th international conference on telecommunications (ICT 2010), (pp. 425–429), IEEE.Google Scholar
  3. 3.
    Alink, M. S. O., Kokkeler, A. B., Klumperink, E. A., Smit, G. J., & Nauta, B. (2011). Lowering the SNR wall for energy detection using cross-correlation. IEEE Transactions on Vehicular Technology, 60(8), 3748–3757.Google Scholar
  4. 4.
    Beaulieu, D. L. (2000). Comprehensive reform and American Indian education. Journal of American Indian Education, 39(2), 29–38.Google Scholar
  5. 5.
    Bruckner, D., Velik, R., & Penya, Y. (2011). Machine perception in automation: A call toarms. EURASIP Journal on Embedded Systems, 6(8), 1–9.Google Scholar
  6. 6.
    Claudino, L., & Abrão, T. (2017). Spectrum sensing methods for cognitive radio networks: A review. Wireless Personal Communications, 95(4), 5003–5037.Google Scholar
  7. 7.
    Dhurgadevi, M., & Devi, P. M. (2018). An analysis of energy efficiency improvement through wireless energy transfer in wireless sensor network. Wireless Personal Communications, 98(4), 3377–3391.Google Scholar
  8. 8.
    Doss, S., Nayyar, A., Suseendran, G., Tanwar, S., Khanna, A., Son, L. H., et al. (2018). APD-JFAD: Accurate prevention and detection of Jelly Fish attack in MANET. Ieee Access, 6, 56954–56965.Google Scholar
  9. 9.
    Dutta P. & Manna G.C. (2016) Designing a cognitive radio with enhancement in throughput and improved spectrum sensing technique. In 2nd IEEE international conference on control science and systems engineering (ICCSS 2016), (pp. 27–29) July 2016, Singapore.  https://doi.org/10.1109/ccsse.2016.7784345.
  10. 10.
    Emara, M., et al. (2016). Spectrum sensing optimization and performance enhancement of cognitive radio networks. Wireless Personal Communications, 86(2), 925–941.Google Scholar
  11. 11.
    Gao, N., et al. (2017). Robust collaborative spectrum sensing using PHY-layer fingerprints in mobile cognitive radio networks. IEEE Communications Letters.  https://doi.org/10.1109/lcomm.2017.2656901.Google Scholar
  12. 12.
    Gao, R., Li, Z., Li, H., & Ai, B. (2015). Absolute value cumulating based spectrum sensing with Laplacian noise in cognitive radio networks. Wireless Personal Communications, 83(2), 1387–1404.Google Scholar
  13. 13.
    Garg, R, Mittal, M, Son, LH (2019). Reliability and energy efficient workflow scheduling in cloud environment. Cluster Computing, (in press).Google Scholar
  14. 14.
    Gohain, P. B., Chaudhari, S., &Koivunen, V. (2018) Cooperative energy detection with heterogeneous sensors under noise uncertainty: SNR wall and use of evidence theory. IEEE Transactions on Cognitive Communications and Networking.Google Scholar
  15. 15.
    Gunes, N., Higgins, D. M., & Leeson, S. M. (2016). A stochastic resonator to detect BPAM signals; analysis, PSR designs, and sine-induced SR. IET Signal Processing.  https://doi.org/10.1049/iet-spr.2015.0152.Google Scholar
  16. 16.
    Hai, D. T., Son, H., & Vinh, L. T. (2017). Novel fuzzy clustering scheme for 3D wireless sensor networks. Applied Soft Computing, 54, 141–149.Google Scholar
  17. 17.
    Haijun, Z., et al. (2016). Interference-limited resource optimization in cognitive femtocells with fairness and imperfect spectrum sensing. IEEE Transactions on Vehicular Technology, 65(3), 1761–1771.Google Scholar
  18. 18.
    Jha, S. K., & Eyong, E. M. (2018). An energy optimization in wireless sensor networks by using genetic algorithm. Telecommunication Systems, 67(1), 113–121.Google Scholar
  19. 19.
    Joshi, D., Dimitrie, P., & Octavia, D. (2011). Gradient-based threshold adaptation for energy detector in cognitive radio systems. IEEE Communications Letters, 15(1), 19–21.Google Scholar
  20. 20.
    Junaid, I., & Kim, D. (2017). Energy-Efficient Management of Cognitive Radio Terminals with Quality-Based Activation. IEEE Communications Letters, 21(5), 1171–1174.Google Scholar
  21. 21.
    Kapoor, R., Gupta, R., Jha, S., & Kumar, R. (2018). Detection of power quality event using histogram of oriented gradients and support vector machine. Measurement, 120, 52–75.Google Scholar
  22. 22.
    Kapoor, R., Gupta, R., Kumar, R., Son, L. H., & Jha, S. (2019). New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems. Wireless Networks.  https://doi.org/10.1007/s11276-018-1750-z.Google Scholar
  23. 23.
    Kapoor, R., Gupta, R., Son, L. H., Jha, S., & Kumar, R. (2018). Detection of power quality event using histogram of oriented gradients and support vector machine. Measurement, 120, 52–75.Google Scholar
  24. 24.
    Kapoor, R., Gupta, R., Son, L. H., Jha, S., & Kumar, R. (2018). Boosting performance of power quality event identification with KL Divergence measure and standard deviation. Measurement, 126, 134–142.Google Scholar
  25. 25.
    Kapoor, R., Gupta, R., Son, LH, Kumar, R., & Jha, S. (2018b) New scheme for underwater acoustically wireless transmission using direct sequence code division multiple access in MIMO systems. Wireless Networks, pp. 1–13.Google Scholar
  26. 26.
    Liu, J., & Li, Z. (2014). Lowering the signal-to-noise ratio wall for energy detection using parameter-induced stochastic resonator. IET Communications, 9(1), 101–107.Google Scholar
  27. 27.
    Liu, J., Youguo, W., & Qiqing, Z. (2016). Stochastic resonance of signal detection in mono-threshold system using additive and multiplicative noises. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 99(1), 323–329.Google Scholar
  28. 28.
    Lo, Y. S., Lim, H. S., & Tan, A. W. C. (2016). Robust signal-to-noise ratio estimation in non-gaussian noise channel. Wireless Personal Communications, 91(2), 561–575.Google Scholar
  29. 29.
    Long, H. V., Ali, M., Khan, M., & Tu, D. N. (2019). A novel approach for fuzzy clustering based on neutrosophic association matrix. Computers & Industrial Engineering.  https://doi.org/10.1016/j.cie.2018.11.007.Google Scholar
  30. 30.
    Mashreghi, M., & Abolhassani, B. (2017). A cluster-based cooperative spectrum sensing strategy to maximize achievable throughput. Wireless Personal Communications, 96(3), 4557–4584.Google Scholar
  31. 31.
    Oude, A., et al. (2011). Lowering the SNR wall for energy detection using cross-correlation. IEEE Transactions on Vehicular Technology, 60(8), 3748–3757.Google Scholar
  32. 32.
    Phuong, P. T. M., Thong, P. H., & Son, L. H. (2018). Theoretical analysis of picture fuzzy clustering: Convergence and property. Journal of Computer Science and Cybernetics, 34(1), 17–32.Google Scholar
  33. 33.
    Robinson, Y. H., Julie, E. G., Saravanan, K., Kumar, R., & Son, L. H. (2019). FD-AOMDV: fault-tolerant disjoint ad-hoc on-demand multipath distance vector routing algorithm in mobile ad-hoc networks. Journal of Ambient Intelligence and Humanized Computing.  https://doi.org/10.1007/s12652-018-1126-3.Google Scholar
  34. 34.
    Saravanan, K., Anusuya, E., Kumar, R., & Son, L. H. (2018). Real-time water quality monitoring using Internet of Things in SCADA. Environmental Monitoring and Assessment, 190(9), 556.Google Scholar
  35. 35.
    Saravanan, K., Aswini, S., Kumar, R., & Son, L. H. (2019). How to prevent maritime border collision for fisheries?-A design of Real-Time Automatic Identification System. Earth Science Informatics, 1, 1–12.  https://doi.org/10.1007/s12145-018-0371-5.Google Scholar
  36. 36.
    Sarkar, S., Virani, N., Yasar, M., Ray A. & Sarkar S. (2013) Spatiotemporal information fusion for fault detection in shipboard auxiliary systems. American Control Conference, Washington D. C., (pp. 3846–3851).Google Scholar
  37. 37.
    Shaikh B., Zafi S., &Umrani F. (2016) An unsigned autocorrelation based blind spectrum sensing approach for cognitive radio. In 2016 IEEE International Conference on Open Source Systems & Technologies (ICOSST 2016), 15–17 Dec. 2016, Lahore, Pakistan.  https://doi.org/10.1109/icosst.2016.7838576.
  38. 38.
    Singh, K., Singh, K., Son, L. H., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks, 138, 90–107.Google Scholar
  39. 39.
    Singh, N., Son, L. H., Chiclana, F., & Jean-Pierre, M. (2019). A new fusion of salp swarm with sine cosine for optimization of non-linear functions. Engineering with Computers.  https://doi.org/10.1007/s00366-018-00696-8.Google Scholar
  40. 40.
    Son, L. H. (2015). A novel kernel fuzzy clustering algorithm for geo-demographic analysis. Information Sciences—Informatics and Computer Science. Intelligent Systems, Applications: An International Journal, 317, 202–223.Google Scholar
  41. 41.
    Son, L. H. (2016). Generalized picture distance measure and applications to picture fuzzy clustering. Applied Soft Computing, 46, 284–295.Google Scholar
  42. 42.
    Son, L. H., & Hai, P. V. (2016). A novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. International Journal of Fuzzy Systems, 18(5), 894–903.MathSciNetGoogle Scholar
  43. 43.
    Son, L. H., Jha, S., Kumar, R., Chatterjee, J. M., & Khari, M. (2019). Collaborative handshaking approaches between internet of computing and internet of things towards a smart world: a review from 2009 to 2017. Telecommunication Systems.  https://doi.org/10.1007/s11235-018-0481-x.Google Scholar
  44. 44.
    Son, L. H., & Tien, N. D. (2017). Tune up fuzzy C-means for big data: some novel hybrid clustering algorithms based on initial selection and incremental clustering. International Journal of Fuzzy Systems, 19(5), 1585–1602.MathSciNetGoogle Scholar
  45. 45.
    Son, L. H., & Tuan, T. M. (2016). A cooperative semi-supervised fuzzy clustering framework for dental X-ray image segmentation. Expert Systems with Applications, 46, 380–393.Google Scholar
  46. 46.
    Son, L. H., & Thong, P. H. (2017). Some novel hybrid forecast methods based on picture fuzzy clustering for weather nowcasting from satellite image sequences. Applied Intelligence, 46(1), 1–15.Google Scholar
  47. 47.
    Son, L. H., & Tuan, T. M. (2017). Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints. Engineering Applications of Artificial Intelligence, 59, 186–195.Google Scholar
  48. 48.
    Tam, N. T., Hai, D. T., Son, L. H., & Vinh, L. T. (2018). Improving lifetime and network connections of 3D wireless sensor networks based on fuzzy clustering and particle swarm optimization. Wireless Networks, 24(5), 1477–1490.Google Scholar
  49. 49.
    Tandra, R., & Sahai, A. (2005). Fundamental limits on detection in low SNR under noise uncertainty. In Wireless Networks, Communications and Mobile Computing, 2005 International Conference on (Vol. 1, pp. 464–469). IEEE.Google Scholar
  50. 50.
    Thanh, N. D., Ali, M., & Son, L. H. (2017). A novel clustering algorithm in a neutrosophic recommender system for medical diagnosis. Cognitive Computation, 9(4), 526–544.Google Scholar
  51. 51.
    Thong, P. H., & Son, L. H. (2016). Picture fuzzy clustering: a new computational intelligence method. Soft Computing, 20(9), 3549–3562.zbMATHGoogle Scholar
  52. 52.
    Thong, P. H., & Son, L. H. (2016). A novel automatic picture fuzzy clustering method based on particle swarm optimization and picture composite cardinality. Knowledge-Based Systems, 109, 48–60.Google Scholar
  53. 53.
    Thong, P. H., & Son, L. H. (2016). Picture fuzzy clustering for complex data. Engineering Applications of Artificial Intelligence, 56, 121–130.Google Scholar
  54. 54.
    Tuan, T. M., Ngan, T. T., & Son, L. H. (2016). A novel semi-supervised fuzzy clustering method based on interactive fuzzy satisficing for dental X-ray image segmentation. Applied Intelligence, 45(2), 402–428.Google Scholar
  55. 55.
    Zulfikar, A. et al. (2017) Enhanced spectrum sensing based on Energy detection in cognitive radio network using adaptive threshold. In 2017 IEEE international conference on networking, systems and security (NSysS), Doi:  https://doi.org/10.1109/nsyss.2017.7885815.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electronics & Communication EngineeringDelhi Technological UniversityDelhiIndia
  2. 2.Department of Electronics & Communication Engineering, AIACT&RDelhiIndia
  3. 3.Division of Data ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Faculty of Information TechnologyTon Duc Thang UniversityHo Chi Minh CityVietnam
  5. 5.School of Computer EngineeringKalinga Institute of Industrial TechnologyBhubaneswarIndia
  6. 6.Computer Science and Engineering DepartmentLNCT CollegeBhopalIndia
  7. 7.VNU Information Technology Institute, Vietnam National UniversityHanoiVietnam

Personalised recommendations