Wireless Personal Communications

, Volume 105, Issue 1, pp 233–256 | Cite as

Efficient Android Software Development Using MIT App Inventor 2 for Bluetooth-Based Smart Home

  • Trio AdionoEmail author
  • Sinantya Feranti Anindya
  • Syifaul Fuada
  • Khilda Afifah
  • Irfan Gani Purwanda


In this paper, a specific Android application for Bluetooth-based smart home system is presented. The aim of this research is to design, develop, and evaluate a user interface prototype for the smart home system. The designed mobile App is named by MINDS-apps V1, which is expected to be able to perform three tasks, (1) controlling by soft-control mode, i.e. an RGB ambient lamp and Fan; (2) controlling by hard-control, i.e. a generic power switch, curtain, door lock, and (3) monitoring purpose, i.e. humidity and temperature sensor. In total, there are six types of smart home devices used for the experiment. Using MIT App Inventor 2, the design process is divided into two phases: user interface design using the Components Designer and implementation of the programming logic using the Blocks Editor. Once the design is finished, the application is then compiled into debuggable APK file with 2.23 MB in size, after which it is tested on six aforementioned devices. The MINDS-apps is able to operate even in the low-end mobile device with 1 gigabyte of random access memory (RAM) and Bluetooth version 2.1.


Android application Bluetooth MIT App Inventor Smart HOME 



This work is one part of the big project entitled “Perangkat Internet-of-Things untuk Sistem Rumah Cerdas” that was funded by the Ministry of Research, Technology and Higher Education of the Republic Indonesia for Desentralisasi scheme with Number of grant: 009/SP2H/LT/DRPM/IV/2017. We would like to thanks to Mr. Maulana Yusuf Fathany for his support in this work.


  1. 1.
    Laberg, T., Aspelund, H., & Thygesen, H. (2005). Smart home technology: Planning and management in municipal services. Oslo: Directorate for Social and Health Affairs.Google Scholar
  2. 2.
    Kang, H., Cho, J., & Kim, H. (2015). Application study on Android application prototyping method using App inventor. Indian Journal of Science and Technology, 8(19), 1–5.Google Scholar
  3. 3.
    Radoslaw, K., Turczynski, L., & Zyla, K. (2016). Comparison of App Inventor 2 and Java in creating personal applications for Android on example of a notepad. Advances in Science and Technology Research Journal, 10(31), 247–254.CrossRefGoogle Scholar
  4. 4.
    Pokress, S. C., & Veiga, J. J. D. (2013). MIT App Inventor: Enabling personal mobile computing. arXiv preprint arXiv:1310.2830.
  5. 5.
    Colter, J. A. (2016). Evaluating and improving the usability of MIT App Inventor. Doctoral dissertation, Massachusetts Institute of Technology, Massachusetts.Google Scholar
  6. 6.
    Kang, H., & Cho, J. (2015). Case study on efficient Android programming education using multi Android development tools. Indian Journal of Science and Technology, 8(19), 1–5.Google Scholar
  7. 7.
    Olivieira, P. B. M. (2015). Teaching automation and control with app inventor applications. In Proceedings of IEEE global engineering education conference (pp. 879–884).Google Scholar
  8. 8.
    Howedi, A., & Jwaid, A. (2016). Design and implementation prototype of a smart house system at low cost and multi-functional. In Future technologies conference (pp. 876–884).Google Scholar
  9. 9.
    Asghar, M. Z., et al. (2016). Quizzes: Quiz application development using Android-based MIT APP Inventor platform. International Journal of Advanced Computer Science and Applications, 7(5), 43–54.Google Scholar
  10. 10.
    Sullivan, D., Chen, W., & Pandya, A. (2017). Design of remote control of home appliances via Bluetooth and android smart phones. In Proceedings of IEEE international conference on consumer electronics (pp. 371–372).Google Scholar
  11. 11.
    Kannapiran, S., & Chakrapani, A. (2017). A novel home automation system using Bluetooth and Arduino. International Journal of Advances in Computer and Electronics Engineering, 2(2), 41–44.Google Scholar
  12. 12.
    Prayogo, S. S, Saptariani, T., & Salahuddin N. S. (2015). Rancang Aplikasi Android Pengendali Mobil dan Kamera Menggunakan APP inventor. In Seminar Nasional Aplikasi Teknologi Informasi, Indonesia (pp. 8–12).Google Scholar
  13. 13.
    De Luca, G., Lillo, P., Mainetti, L., Mighali, V., Patrono, L., & Sergi, I. (2013). The use of NFC and Android technologies to enable a KNX-based smart home. In 2013 21st International conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–7). IEEE.Google Scholar
  14. 14.
    Adiono, T., Tandiawan, B., Fuada, S., Muttaqin, R., Fathany, M. Y., Adijarto, W., & Harimurti, S. (2017). Prototyping design of IR remote controller for smart home applications. In Proceeding of the 2017 IEEE region 10 conference (TENCON) (pp. 1304–1308).Google Scholar
  15. 15.
    Swain, K. P., Prasad, M. V. S. V., Palai, G., Sahoo, J., & Mohanty, M. N. (2017). Exploiting VLC technique for smart home automation using Arduino. Artificial intelligence and evolutionary computations in engineering systems (pp. 211–220). Singapore: Springer.CrossRefGoogle Scholar
  16. 16.
    Afifah, K., Fuada, S., Putra, R. V. W., Adiono, T., & Fathany, M. Y. (2016). Design of low power mobile application for smart home. In Proceedings of international symposium on electronics and smart devices (pp. 127–131).Google Scholar
  17. 17.
    Adiono, T., Putra, R. V. W., Fathany, M. Y., Afifah, K., Santriaji, M. H., Lawu, B. L., & Fuada, S. (2016). Prototyping design of electronic end-devices for smart home applications. In Proceedings of the IEEE region 10 symposium (TENSYMP) (pp. 1–5).Google Scholar
  18. 18.
    Lawu, B. L., Fathany, M. Y., Afifah, K., Santriaji, M. H., Putra, R. V. W., Fuada, S., & Adiono, T. (2016). Prototyping design of mechanical based end-devices for smart home applications. In Proceedings of 2016 4th internatinal conference on information and communication technology (ICoICT) (pp. 1–5).Google Scholar
  19. 19.
    Fathany, M. Y., & Adiono, T. (2015). Wireless protocol design for smart home on mesh wireless sensor network. In Proceedings of 2015 international symposium on intelligent signal processing and communication systems (ISPACS) (pp. 462–466).Google Scholar
  20. 20.
    Adiono, T., Tandiawan, B., & Fuada, S. (2018). Device protocol design for security on internet of things based smart home. International Journal of Online Engineering (iJOE), 14(7), 161–170.CrossRefGoogle Scholar
  21. 21.
    Adiono, T., Fathany, M. Y., Putra, R. V. W., Afifah, K., Santriaji, M. H., Lawu, B. L., & Fuada, S. (2016). Live demonstration: MINDS-meshed and internet networked devices system for smart home. In Proceedings of the 13th IEEE Asia Pacific conference on circuits and systems (APCCAS) (pp. 736–737).Google Scholar
  22. 22.
    Adiono, T., Putra, R. V. W., Fathany, M. Y., Lawu, B. L., Afifah, K., Santriaji, M. H. (2016). Rapid prototyping methodology of lightweight electronic drivers for smart home appliances. International Journal of Electrical and Computer Engineering (IJECE), 6(5), 2114–2124.CrossRefGoogle Scholar
  23. 23.
    Adiono, T., Fathany, M. Y., Fuada, S., Purwanda, I. G., & Anindya, S. F. (2018). A portable node of humidity and temperature sensor for indoor environment monitoring. In Proceeding of the 3rd international conference on intelligent green building and smart grid (IGBSG) (pp. 1–5).Google Scholar
  24. 24.
    Adiono, T., Marthensa, R., Muttaqin, R., Fuada, S., Harimurti, S., & Adijarto, W. (2017). Design of database and secure communication protocols for internet-of-things-based smart home system. In Proceedings of IEEE region 10 conference (TENCON) (pp. 1273–1278).Google Scholar
  25. 25.
    Adiono, T., Putra, R. V. W., Fathany, M. Y., Afifah, K., Santriaji, M. H., Lawu, B. L., & Fuada, S. (2017). MINDS–Perangkat Sistem Rumah Cerdas berbasis Internet-of-Things. In Buku 108 Inovasi Indonesia.Google Scholar
  26. 26.
    Fuada, S., & Adiono, T. (2018). The importance of lightweight implementation concept for nodes in smart home system. Electrical & Electronic Technology Open Access Journal (EETOAJ), 2(1), 15–18.Google Scholar
  27. 27.
    Yin, Z., Che, Y., & He, W. (2015). A hierarchical group control method of electrical loads in smart home. In Proceeding of the 6th international conference on power electronics systems and applications (PESA) (pp 1–6).Google Scholar
  28. 28.
    Adiono, T., Anindya, S. F., Fuada, S., & Fathany, M. Y. (2018). In Proceedings of the IEEE 7th Global Conference on Consumer Electronics (GCCE) (pp. 461–463).Google Scholar
  29. 29.
    Adiono, T., Anindya, S. F., Fuada, S., & Fathany, M. Y. (2018). Curtain control systems development on mesh wireless network of the smart home. Bulletin of Electrical Engineering and Informatics (BEEI), 7(4), 615–625.Google Scholar
  30. 30.
    Adiono, T., Fathany, M. Y., Anindya, S. F., Fuada, S., & Purwanda, I. G. Development of wireless fan speed control using smartphone for smart home prototype (Unpublished).Google Scholar
  31. 31.
    Adiono, T., Anindya, S. F., Fuada, S., Purwanda, I. G., & Fathany, M. Y. IoT-enabled door lock system (Unpublished).Google Scholar
  32. 32.
    Adiono, T., Fathany, M. Y., Anindya, S. F., Fuada, S., & Purwanda, I. G. (2018). Wirelessly control for RGB lamp end-device: Design and implementation. In IEEE Region 10 (TENCON).Google Scholar
  33. 33.
    Adiono, T., Fathany, M. Y., Anindya, S. F., Fuada, S., & Purwanda, I. G. Using a smart plug based on consumer electronics to support low-power smart home (Unpublished).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electrical Engineering and InformaticsInstitut Teknologi Bandung (ITB)BandungIndonesia
  2. 2.University Center of Excellence on MicroelectronicsITBBandungIndonesia
  3. 3.Department of Function Control SystemsShibaura Institute of Technology (SIT)TokyoJapan
  4. 4.FUSI Global Technology, LtdBandungIndonesia

Personalised recommendations