Wireless Personal Communications

, Volume 104, Issue 4, pp 1493–1522 | Cite as

A Taxonomy for MAC Protocols in Wireless Sensor Networks Based on Traffic Prioritization

  • Anwar Ahmed KhanEmail author
  • Sayeed Ghani
  • Shama Siddiqui


Various media access control (MAC) protocols have been developed to deal with the heterogenous traffic in wireless sensor networks (WSN). In many emerging applications, it is regarded essential to prioritize the heterogeneous traffic for reliable performance of WSN. This work categorizes the recently developed traffic prioritization MAC protocols in the classes of ‘Adaptive Contention’, ‘Duty-Cycle Adaptation’, ‘Queue Management’ and ‘Hybrid’. A taxonomy has been developed based on the categorization and detailed overview of each protocol is presented. The performance benefits and gaps are described for each of the protocols and the future research directions are suggested based on the analysis. It has been identified that most of the existing MAC protocols, although provide early channel access to high priority traffic, fail to offer true preemptive priority. There exists no mechanism which could pause/interrupt the ongoing transmission of the low priority traffic to facilitate the immediate channel access for high priority data. The analysis provided by this article is expected to aid the future researchers in identifying the trends of MAC protocol development in the context of traffic prioritization.


Taxonomy Heterogenous Priority 



  1. 1.
    Anjum, I., Alam, N., Razzaque, M. A., Mehedi Hassan, M., & Alamri, A. (2013). Traffic priority and load adaptive MAC protocol for QoS provisioning in body sensor networks. International Journal of Distributed Sensor Networks, 9, 205192.CrossRefGoogle Scholar
  2. 2.
    Bhandari, S., & Moh, S. (2016). A priority-based adaptive MAC protocol for wireless body area networks. Sensors, 16, 401.CrossRefGoogle Scholar
  3. 3.
    Borges, L. M., Velez, F. J., & Lebres, A. S. (2014). Survey on the characterization and classification of wireless sensor network applications. IEEE Communications Surveys & Tutorials, 16, 1860–1890.CrossRefGoogle Scholar
  4. 4.
    Buratti, C., & Verdone, R. (2016). L-CSMA: A MAC protocol for multihop linear wireless (sensor) networks. IEEE Transactions on Vehicular Technology, 65, 251–265.CrossRefGoogle Scholar
  5. 5.
    Nasser, N., Karim, L., & Taleb, T. (2013). Dynamic multilevel priority packet scheduling scheme for wireless sensor network. IEEE Transactions on Wireless Communications, 12, 1448–1459.CrossRefGoogle Scholar
  6. 6.
    Donmez, M. Y., Isik, S., & Ersoy, C. (2014). Analysis of a prioritized contention model for multimedia wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 10, 36.CrossRefGoogle Scholar
  7. 7.
    Yaghmaee, M. H., & Adjeroh, D. A. (2009). Priority-based rate control for service differentiation and congestion control in wireless multimedia sensor networks. Computer Networks, 53, 1798–1811.CrossRefzbMATHGoogle Scholar
  8. 8.
    Doudou, M., Djenouri, D., Barcelo-Ordinas, J. M., & Badache, N. (2016). Delay-efficient MAC protocol with traffic differentiation and run-time parameter adaptation for energy-constrained wireless sensor networks. Wireless Networks, 22, 467–490.CrossRefGoogle Scholar
  9. 9.
    Henna, S., Sajeel, M., Bashir, F., Asfand-e-Yar, M., & Tauqir, M. (2017). A fair contention access scheme for low-priority traffic in wireless body area networks. Sensors, 17, 1931.CrossRefGoogle Scholar
  10. 10.
    Subramanian, A. K., & Paramasivam, I. (2017). PRIN: A priority-based energy efficient mac protocol for wireless sensor networks varying the sample inter-arrival time. Wireless Personal Communications, 92, 863–881.CrossRefGoogle Scholar
  11. 11.
    Ozen, Y., & Bayilmis, C. (2017). urgMAC: A new traffic and QoS-aware cross-layer MAC protocol for wireless multimedia sensor networks. The Computer Journal, 61, 1460–1467.CrossRefGoogle Scholar
  12. 12.
    Yu, J., Park, L., Park, J., Cho, S., & Keum, C. (2016). CoR-MAC: Contention over reservation MAC protocol for time-critical services in wireless body area sensor networks. Sensors, 16, 656.CrossRefGoogle Scholar
  13. 13.
    Khatua, M., & Misra, S. (2016). D2D: Delay-aware distributed dynamic adaptation of contention window in wireless networks. IEEE Transactions on Mobile Computing, 15, 322–335.CrossRefGoogle Scholar
  14. 14.
    Zheng, T., Gidlund, M., & Åkerberg, J. (2016). WirArb: A new MAC protocol for time critical industrial wireless sensor network applications. IEEE Sensors Journal, 16, 2127–2139.CrossRefGoogle Scholar
  15. 15.
    Shen, W., Zhang, T., Barac, F., & Gidlund, M. (2014). PriorityMAC: A priority-enhanced MAC protocol for critical traffic in industrial wireless sensor and actuator networks. IEEE Transactions on Industrial Informatics, 10, 824–835.CrossRefGoogle Scholar
  16. 16.
    Yigitel, M. A., Incel, O. D., & Ersoy, C. (2011). Design and implementation of a QoS-aware MAC protocol for wireless multimedia sensor networks. Computer Communications, 34, 1991–2001.CrossRefGoogle Scholar
  17. 17.
    Soua, R., & Minet, P. (2015). Multichannel assignment protocols in wireless sensor networks: A comprehensive survey. Pervasive and Mobile Computing, 16, 2–21.CrossRefGoogle Scholar
  18. 18.
    Phung, K. H., Lemmens, B., Goossens, M., Nowe, A., Tran, L., & Steenhaut, K. (2015). Schedule-based multi-channel communication in wireless sensor networks: A complete design and performance evaluation. Ad Hoc Networks, 26, 88–102.CrossRefGoogle Scholar
  19. 19.
    Carrano, R. C., Passos, D. G., Magalhães, L. C. S., & Célio Vinicius, N. (2014). Survey and taxonomy of duty cycling mechanisms in wireless sensor networks. IEEE Communications Surveys and Tutorials, 16, 181–194.CrossRefGoogle Scholar
  20. 20.
    Huang, P., Xiao, L., Soltani, S., Mutka, M. W., & Xi, N. (2013). The evolution of MAC protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15, 101–120.CrossRefGoogle Scholar
  21. 21.
    Sherazi, H. H. R., Grieco, L. A., & Boggia, G. (2018). A comprehensive review on energy harvesting MAC protocols in WSNs: Challenges and tradeoffs. Ad Hoc Networks, 71, 117–134.CrossRefGoogle Scholar
  22. 22.
    Masud, F., Abdullah, A. H., Abdul-Salaam, G., & Ullah, F. (2017). Traffic adaptive MAC protocols in wireless body area networks. Wireless Communications and Mobile Computing, 2017.Google Scholar
  23. 23.
    Oller, J., Demirkol, I., Casademont, J., Paradells, J., Gamm, G. U., & Reindl, L. (2016). Has time come to switch from duty-cycled MAC protocols to wake-up radio for wireless sensor networks? IEEE/ACM Transactions on Networking, 24, 674–687.CrossRefGoogle Scholar
  24. 24.
    Ullah, F., Abdullah, A. H., Kaiwartya, O., & Cao, Y. (2017). TraPy-MAC: Traffic priority aware medium access control protocol for wireless body area network. Journal of Medical Systems, 41, 93.CrossRefGoogle Scholar
  25. 25.
    Pandit, S., Sarker, K., Razzaque, M. A., & Sarkar, A. J. (2015). An energy-efficient multiconstrained QoS aware MAC protocol for body sensor networks. Multimedia Tools and Applications, 74, 5353–5374.CrossRefGoogle Scholar
  26. 26.
    Tian, J., Wang, Y., Liang, X., Wang, G., & Zhang, Y. (2017). WA-MAC: A weather adaptive MAC protocol in survivability-heterogeneous wireless sensor networks. Ad Hoc Networks, 67, 40–52.CrossRefGoogle Scholar
  27. 27.
    Zhang, C., Wang, Y., Liang, Y., Shu, M., & Chen, C. (2016). An energy-efficient MAC protocol for medical emergency monitoring body sensor networks. Sensors, 16, 385.CrossRefGoogle Scholar
  28. 28.
    Hassan, M. N., Murphy, L., & Stewart, R. (2016). Traffic differentiation and dynamic duty cycle adaptation in IEEE 802.15. 4 beacon enabled WSN for real-time applications. Telecommunication Systems, 62, 303–317.CrossRefGoogle Scholar
  29. 29.
    Ghayvat, H., Mukhopadhyay, S., Gui, X., & Suryadevara, N. (2015). WSN- and IOT-based smart homes and their extension to smart buildings. Sensors, 15, 10350–10379.CrossRefGoogle Scholar
  30. 30.
    Jin, J., Gubbi, J., Marusic, S., & Palaniswami, M. (2014). An information framework for creating a smart city through internet of things. IEEE Internet of Things Journal, 1, 112–121.CrossRefGoogle Scholar
  31. 31.
    Wang, C., Sohraby, K., Lawrence, V., Li, B., & Hu, Y. (2006). Priority-based congestion control in wireless sensor networks. In Null (pp. 22–31).Google Scholar
  32. 32.
    Qiu, T., Zheng, K., Han, M., Chen, C. P., & Xu, M. (2018). A data-emergency-aware scheduling scheme for internet of things in smart cities. IEEE Transactions on Industrial Informatics, 14, 2042–2051.CrossRefGoogle Scholar
  33. 33.
    Purri, S., Choudhury, T., Kashyap, N., & Kumar, P. (2017). Specialization of IoT applications in health care industries. In International conference on big data analytics and computational intelligence (ICBDAC), 2017 (pp. 252–256). IEEE.Google Scholar
  34. 34.
    Khelil, A., & Soldani, D. (2014). On the suitability of device-to-device communications for road traffic safety. In: IEEE world forum on Internet of Things (WF-IoT), 2014 (pp. 224–229).Google Scholar
  35. 35.
    Gündoğdu, K., & Çalhan, A. (2016). An implementation of wireless body area networks for improving priority data transmission delay. Journal of Medical Systems, 40, 75.CrossRefGoogle Scholar
  36. 36.
    Kateretse, C., Lee, G. W., & Huh, E. N. (2013). A practical traffic scheduling scheme for differentiated services of healthcare systems on wireless sensor networks. Wireless Personal Communications, 71, 909–927.CrossRefGoogle Scholar
  37. 37.
    Ullah, F., Abdullah, A. H., Kaiwartya, O., Kumar, S., & Arshad, M. M. (2017). Medium access control (MAC) for wireless body area network (WBAN): Superframe structure, multiple access technique, taxonomy, and challenges. Human-Centric Computing and Information Sciences, 7, 34.CrossRefGoogle Scholar
  38. 38.
    Chowdhury, A., & Raut, S. A. (2018). A survey study on internet of things resource management. Journal of Network and Computer Applications, 120, 42–60.CrossRefGoogle Scholar
  39. 39.
    Ovsthus, K., & Kristensen, L. M. (2014). An industrial perspective on wireless sensor networks—A survey of requirements, protocols, and challenges. IEEE Communications Surveys & Tutorials, 16, 1391–1412.CrossRefGoogle Scholar
  40. 40.
    Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anwar Ahmed Khan
    • 1
    Email author
  • Sayeed Ghani
    • 1
  • Shama Siddiqui
    • 2
  1. 1.Department of Computer ScienceInstitute of Business AdministrationKarachiPakistan
  2. 2.Department of Computer ScienceDHA Suffa UniversityKarachiPakistan

Personalised recommendations