Wireless Personal Communications

, Volume 104, Issue 4, pp 1433–1471 | Cite as

A Detailed Study on Internet Connectivity Schemes for Mobile ad Hoc Network

  • Rashmi KushwahEmail author
  • Shashikala Tapaswi
  • Ajay Kumar


Integration of Mobile ad hoc network (MANET) with the fixed Internet has paid immense attention in the field of heterogeneous networks. Such integration has many advantages and offer many usage scenarios for both MANET and the Internet. The MANET routing protocol ad hoc on-demand distance vector and dynamic source routing provide communication within the MANET. However, MANET router which desires communication with the Internet require global connectivity. This paper presents a survey of most significant proposals for MANET-Internet connectivity by describing their characteristics, evaluation metrics, quality parameters and approaches referred. The study of various gateway discovery and gateway selection schemes have been presented based on routing metrics, load balancing, adaptive technique, fuzzy system, address configuration and ant colony optimization approaches. Summary of significant contributions of existing schemes and issues found in literature for MANET-Internet connectivity have been presented. The survey concludes with additional investigation for future research work.


Ad hoc networks Gateway selection QoS Internet gateway Wireless networks 



  1. 1.
    Prakash, J., Kumar, R., & Saini, J. P. (2017). MANET-internet integration architecture. Journal of Applied Sciences, 17(6), 264–281.Google Scholar
  2. 2.
    Sadok, D. F. H., Rodrigues, T. G., Amorim, R. D. M., & Kelner, J. (2015). On the performance of heterogeneous MANETs. Wireless Networks, 21(1), 139–160.Google Scholar
  3. 3.
    Chai, R., Zhang, H., Dong, X., Chen, Q., & Svensson, T. (2014). Optimal joint utility based load balancing algorithm for heterogeneous wireless networks. Wireless Networks, 20(6), 1557–1571.Google Scholar
  4. 4.
    Hadjichristofi, G. C., DaSilva, L. A., Midkiff, S. F., Lee, U., & De Sousa, W. (2011). Routing, security, resource management, and monitoring in ad hoc networks: Implementation and integration. Computer Networks, 55(1), 282–299.Google Scholar
  5. 5.
    Jisha, G., Samuel, P., & Paul, V. (2016). Role of gateways in MANET integration scenarios. Indian Journal of Science and Technology, 9(3), 1–19.Google Scholar
  6. 6.
    Attia, R., Rizk, R., & Ali, H. A. (2015). Efficient internet access framework for mobile ad hoc networks. Wireless Personal Communications, 84(3), 1689–1722.Google Scholar
  7. 7.
    Ding, S. (2008). A survey on integrating MANETs with the internet: Challenges and designs. Computer Communications, 31(14), 3537–3551.Google Scholar
  8. 8.
    Wang, C., Jiang, C., Li, X. Y., & Liu, Y. (2011). On multicast throughput scaling of hybrid wireless networks with general node density. Computer Networks, 55(15), 3548–3561.Google Scholar
  9. 9.
    Nordstrom, E., Gunningberg, P., & Tschudin, C. (2011). Robust and flexible internet connectivity for mobile ad hoc networks. Ad Hoc Networks, 9(1), 1–15.Google Scholar
  10. 10.
    Capone, A., Cesana, M., De Donno, D., & Filippini, I. (2010). Deploying multiple interconnected gateways in heterogeneous wireless sensor networks: An optimization approach. Computer Communications, 33(10), 1151–1161.Google Scholar
  11. 11.
    Papadaki, K., & Friderikos, V. (2010). Gateway selection and routing in wireless mesh networks. Computer Networks, 54(2), 319–329.zbMATHGoogle Scholar
  12. 12.
    Kleerekoper, A., & Filer, N. P. (2014). DECOR: Distributed construction of load balanced routing trees for many to one sensor networks. Ad Hoc Networks, 16, 225–236.Google Scholar
  13. 13.
    Aljeri, N., Abrougui, K., Almulla, M., & Boukerche, A. (2013). A performance evaluation of load balancing and QoS-aware gateway discovery protocol for VANETs. In IEEE international conference on advanced information networking and applications workshops (pp. 90–94).Google Scholar
  14. 14.
    Xu, X., Tang, S., Mao, X., & Li, X. Y. (2010). Distributed gateway placement for cost minimization in wireless mesh networks. In IEEE international conference on distributed computing systems (pp. 507–515).Google Scholar
  15. 15.
    Raychaudhuri, D., Nagaraja, K., & Venkataramani, A. (2012). Mobilityfirst: A robust and trustworthy mobility-centric architecture for the future internet. Mobile Computing and Communications Review, 16(3), 2–13.Google Scholar
  16. 16.
    Munoz, J. L., Esparza, O., Ganan, C., & Parra-Arnau, J. (2009). Pkix certificate status in hybrid manets. In International workshop on information security theory and practices (pp. 153–166). Springer.Google Scholar
  17. 17.
    Mukherjee, S., Sriram, S., Vu, T., & Raychaudhuri, D. (2017). EIR: Edge-aware inter-domain routing protocol for the future mobile internet. Computer Networks, 127, 13–30.Google Scholar
  18. 18.
    Li, Z., & Shen, H. (2014). A QoS-oriented distributed routing protocol for hybrid wireless networks. IEEE Transactions on Mobile Computing, 13(3), 693–708.Google Scholar
  19. 19.
    He, B., Xie, B., & Agrawal, D. P. (2008). Optimizing deployment of internet gateway in wireless mesh networks. Computer Communications, 31(7), 1259–1275.Google Scholar
  20. 20.
    Seyedzadegan, M., Othman, M., Ali, B. M., & Subramaniam, S. (2013). Zero-degree algorithm for internet GateWay placement in backbone wireless mesh networks. Journal of Network and Computer Applications, 36(6), 1705–1723.Google Scholar
  21. 21.
    Borrego, C., Garcia, G., & Robles, S. (2017). Softwarecast: A code-based delivery manycast scheme in heterogeneous and opportunistic ad hoc networks. Ad Hoc Networks, 55, 72–86.Google Scholar
  22. 22.
    Zhao, G., & Liang, Q. (2017). On the uplink outage throughput capacity of hybrid wireless networks with massive MIMO. Ad Hoc Networks, 58, 62–69.Google Scholar
  23. 23.
    Aoun, B., Boutaba, R., Iraqi, Y., & Kenward, G. (2006). Gateway placement optimization in wireless mesh networks with QoS constraints. IEEE Journal on Selected Areas in Communications, 24(11), 2127–2136.Google Scholar
  24. 24.
    Bouk, S. H., Sasase, I., Ahmed, S. H., & Javaid, N. (2012). Gateway discovery algorithm based on multiple QoS path parameters between mobile node and gateway node. Journal of Communications and Networks, 14(4), 434–442.Google Scholar
  25. 25.
    Jie, L. (2012). Ad hoc access gateway selection algorithm. Physics Procedia, 25, 2242–2248.Google Scholar
  26. 26.
    Lim, S., Lee, W. C., Cao, G., & Das, C. R. (2006). A novel caching scheme for improving internet-based mobile ad hoc networks performance. Ad Hoc Networks, 4(2), 225–239.Google Scholar
  27. 27.
    Wang, Z., Yang, K., Hunter, D. K., Hu, Z., & Tian, H. (2013). A queuing theory-enabled dynamic bandwidth allocation algorithm for a wired-wireless converged network. Wireless Personal Communications, 72(2), 1373–1397.Google Scholar
  28. 28.
    Srivastava, P., & Kumar, R. (2018). A timestamp-based adaptive gateway discovery algorithm for ubiquitous internet access in MANET. In Next-generation networks (pp. 153–162). Springer.Google Scholar
  29. 29.
    Xu, H., Ju, L., & Jia, Z. (2015). Enhance internet access ability for ad hoc network with on-demand gateway broadcast strategy. International Journal of Wireless Information Networks, 22(4), 415–427.Google Scholar
  30. 30.
    Li, X., & Li, Z. (2010). A MANET accessing Internet routing algorithm based on dynamic gateway adaptive selection. Frontiers of Computer Science in China, 4(1), 143–150.Google Scholar
  31. 31.
    Nitti, M., & Atzori, L. (2012). Multimedia streaming in multi-homed hybrid ad hoc networks: A model of network connectivity. Signal Processing: Image Communication, 27(8), 827–835.Google Scholar
  32. 32.
    Zaman, R. U., Khan, K. U. R., & Reddy, A. V. (2014). Path load balanced adaptive gateway discovery in integrated internet-MANET. In IEEE international conference on communication systems and network technologies (pp. 203–206).Google Scholar
  33. 33.
    Yuste, A. J., Trivino, A., Casilari, E., & Trujillo, F. D. (2011). Adaptive gateway discovery for mobile ad hoc networks based on the characterisation of the link lifetime. IET Communications, 5(15), 2241–2249.Google Scholar
  34. 34.
    Khan, K. U. R., Reddy, A. V., Zaman, R. U., Reddy, K. A., & Harsha, T. S. (2008). An efficient DSDV routing protocol for MANET and its usefulness for providing internet access to ad hoc hosts. In IEEE TENCON conference (pp. 1–6).Google Scholar
  35. 35.
    Iqbal, S. M. A., & Kabir, M. H. (2011). Internet gateway discovery and selection scheme in mobile ad hoc network. In IEEE international conference on computer and information technology (pp. 44–49).Google Scholar
  36. 36.
    Park, B. N., Lee, W., & Lee, C. (2007). QoS-aware Internet access schemes for wireless mobile ad hoc networks. Computer Communications, 30(2), 369–384.Google Scholar
  37. 37.
    Bin, S., Haiyan, K., & Zhonggong, H. (2006). Adaptive mechanisms to enhance internet connectivity for mobile ad hoc networks. In IEEE international conference on wireless communications, networking and mobile computing (pp. 1–4).Google Scholar
  38. 38.
    Ruiz, P. M., & Gomez-Skarmeta, A. F. (2004). Maximal source coverage adaptive gateway discovery for hybrid ad hoc networks. In International conference on ad-hoc networks and wireless (pp. 28–41). Springer.Google Scholar
  39. 39.
    Srivastava, P., & Kumar, R. (2018). An ANN based QoS aware adaptive gateway discovery approach for MANET and infrastructured networks integration. Adhoc & Sensor Wireless Networks, 41(3), 295–323.Google Scholar
  40. 40.
    Das, S. K., & Tripathi, S. (2018). Adaptive and intelligent energy efficient routing for transparent heterogeneous ad-hoc network by fusion of game theory and linear programming. Applied Intelligence, 48(7), 1825–1845.Google Scholar
  41. 41.
    Domingo, M. C., & Prior, R. (2007). An adaptive gateway discovery algorithm to support QoS when providing internet access to mobile ad hoc networks. Journal of Networks, 2(2), 33–44.Google Scholar
  42. 42.
    Javaid, U., Rasheed, T., Meddour, D. E., & Ahmed, T. (2008). Adaptive distributed gateway discovery in hybrid wireless networks. In IEEE wireless communications and networking conference (pp. 2735–2740).Google Scholar
  43. 43.
    Jiang, H., & Jin, S. (2007). Design and analysis of adaptive strategies for locating internet-based servers in MANETs. Performance Evaluation, 64(5), 464–479.Google Scholar
  44. 44.
    Yuste-Delgado, A. J., Cuevas-Martinez, J. C., Canada-Bago, J., Fernandez-Prieto, J. A., & Gadeo-Martos, M. A. (2016). Improving hybrid ad hoc networks: The election of gateways. Applied Soft Computing, 41, 1–14.Google Scholar
  45. 45.
    Palani, K., & Ramamoorthy, P. (2016). Improved adaptive gateway discovery scheme using CAB-protocols in MANET to INTERNET connection. ARPN Journal of Engineering and Applied Sciences, 11(1), 758–764.Google Scholar
  46. 46.
    Carvalho, T., Junior, J. J., & Frances, R. (2016). A new cross-layer routing with energy awareness in hybrid mobile ad hoc networks: A fuzzy-based mechanism. Simulation Modelling Practice and Theory, 63, 1–22.Google Scholar
  47. 47.
    Yuste, A. J., Trivino, A., & Casilari, E. (2013). Type-2 fuzzy decision support system to optimise MANET integration into infrastructure-based wireless systems. Expert Systems with Applications, 40(7), 2552–2567.Google Scholar
  48. 48.
    Yuste, A. J., Trujillo, F. D., Trivino, A., Casilari, E., & Diaz-Estrella, A. (2009). An adaptive genetic fuzzy control gateway discovery to interconnect hybrid MANETs. In IEEE wireless communications and networking conference (pp. 1–6).Google Scholar
  49. 49.
    Zaman, R. U., Khan, K. U. R., & Reddy, A. V. (2014). Load balanced fuzzy control based adaptive gateway discovery in integrated internet MANET. In IEEE international conference on computer and communications technologies (pp. 1–6).Google Scholar
  50. 50.
    Srivastava, P., & Kumar, R. (2017). An optimal fuzzy load balanced adaptive gateway discovery for ubiquitous internet access in MANET. In Fuzzy systems: Concepts, methodologies, tools, and applications (pp. 663–681).Google Scholar
  51. 51.
    Mishra, R., Verma, P., & Kumar, R. (2017). Gateway discovery in MANET using machine learning and soft computing: A survey. In IEEE international conference on innovations in information, embedded and communication systems (pp. 1–6).Google Scholar
  52. 52.
    Das, S. K., & Tripathi, S. (2018). Energy efficient routing formation algorithm for hybrid ad-hoc network: A geometric programming approach. Peer-to-Peer Networking and Applications. Scholar
  53. 53.
    Prakas, J., Gupta, D. K., & Kumar, R. (2017). Soft computing based cluster-head selection in mobile ad-hoc network. Journal of Artificial Intelligence, 10(3), 98–111.Google Scholar
  54. 54.
    Gunasekaran, M., & Premalatha, K. (2013). SPAWN: A secure privacy-preserving architecture in wireless mobile ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 2013(1), 220–232.Google Scholar
  55. 55.
    Ahmed, M. A., & Khan, K. U. R. (2013). Trust based secure gateway discovery mechanism for integrated internet and MANET. In International conference on distributed computing and internet technology (pp. 103–114). Springer.Google Scholar
  56. 56.
    Matsuda, T., Nakayama, H., Shen, X. S., Nemoto, Y., & Kato, N. (2010). Gateway selection protocol in hybrid manet using dymo routing. Mobile Networks and Applications, 15(2), 205–215.Google Scholar
  57. 57.
    Turkanovic, M., Brumen, B., & Holbl, M. (2014). A novel user authentication and key agreement scheme for heterogeneous ad hoc wireless sensor networks, based on the Internet of Things notion. Ad Hoc Networks, 20, 96–112.Google Scholar
  58. 58.
    Rai, A. K., & Tewari, R. R. (2012). A secure framework for integrated manet-internet communication. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 82(3), 251–255.Google Scholar
  59. 59.
    Gupta, A. K., Kumar, R., & Gupta, N. K. (2014). A trust based secure gateway selection and authentication scheme in MANET. In International conference on contemporary computing and informatics (pp. 1087–1093).Google Scholar
  60. 60.
    Manoharan, R., & Mohanalakshmie, S. (2011). A trust based gateway selection scheme for integration of MANET with internet. In IEEE international conference on recent trends in information technology (pp. 543–548).Google Scholar
  61. 61.
    Masdari, M. (2017). Markov chain-based evaluation of the certificate status validations in hybrid MANETs. Journal of Network and Computer Applications, 80, 79–89.Google Scholar
  62. 62.
    Rai, A. K., & Tewari, R. R. (2013). Verification of secure gateway selection protocol using PI-calculus. In IEEE international conference on engineering (pp. 1–6).Google Scholar
  63. 63.
    Zaman, R. U., & Sultana, R. (2018). Identifying trustworthy nodes in an integrated internet MANET to establish a secure communication. In International conference on computational intelligence and informatics (pp. 321–328). Springer.Google Scholar
  64. 64.
    Yan, Y., Ci, L., Zhang, R., & Wang, Z. (2014). Load balancing routing algorithm among multiple gateways in MANET with internet connectivity. In IEEE international conference on advanced communication technology (pp. 388–392).Google Scholar
  65. 65.
    Hao, Z., & Li, Y. (2015). An adaptive load-aware routing algorithm for multi-interface wireless mesh networks. Wireless Networks, 21(2), 557–564.Google Scholar
  66. 66.
    Kushwah, R., Tapaswi, S., Kumar, A., Pattanaik, K. K., Yousef, S., & Cole, M. (2018). Gateway load balancing using multiple QoS parameters in a hybrid MANET. Wireless Networks, 24(4), 1071–1082.Google Scholar
  67. 67.
    Habib, I., Badruddin, N., & Drieberg, M. (2015). Delay-based load-balancing routing (DLBR) algorithm for wireless ad-hoc networks. In IEEE international conference on computer, communications, and control technology (pp. 450–454).Google Scholar
  68. 68.
    Chang, C. L., & Lin, T. L. (2008). A load-balanced routing consideration with delay-based RREQ scheme in wireless mesh networks. In IEEE international conference on embedded software and systems (pp. 625–629).Google Scholar
  69. 69.
    Ghadimi, E., Khonsari, A., Diyanat, A., Farmani, M., & Yazdani, N. (2011). An analytical model of delay in multi-hop wireless ad hoc networks. Wireless Networks, 17(7), 1679–1697.Google Scholar
  70. 70.
    Jabbar, W. A., Ismail, M., & Nordin, R. (2017). Energy and mobility conscious multipath routing scheme for route stability and load balancing in MANETs. Simulation Modelling Practice and Theory, 77, 245–271.Google Scholar
  71. 71.
    Chaitanya, N. K., & Varadarajan, S. (2016). Load distribution using multipath-routing in wired packet networks: A comparative study. Perspectives in Science, 8, 234–236.Google Scholar
  72. 72.
    He, J., & Rexford, J. (2008). Toward internet-wide multipath routing. IEEE Network, 22(2), 16–21.Google Scholar
  73. 73.
    Prabhavat, S., Nishiyama, H., Ansari, N., & Kato, N. (2012). On load distribution over multipath networks. IEEE Communications Surveys & Tutorials, 14(3), 662–680.Google Scholar
  74. 74.
    Das, I., Lobiyal, D. K., & Katti, C. P. (2016). Multipath routing in mobile ad hoc network with probabilistic splitting of traffic. Wireless Networks, 22(7), 2287–2298.Google Scholar
  75. 75.
    Choi, H. G., & Han, S. J. (2010). Domain load balancing routing for multi-gateway wireless mesh networks. Wireless Networks, 16(8), 2105–2122.Google Scholar
  76. 76.
    Xu, Y., Sheng, M., Liu, J., & Shi, Y. (2014). On the packet loss overhead in buffer-limited ad hoc networks. Wireless Networks, 20(6), 1653–1667.Google Scholar
  77. 77.
    Zeng, F., & Chen, Z. G. (2009). Cost-sensitive and load-balancing gateway placement in wireless mesh networks with QoS constraints. Journal of Computer Science and Technology, 24(4), 775–785.Google Scholar
  78. 78.
    Galvez, J. J., Ruiz, P. M., & Skarmeta, A. F. (2012). Responsive on-line gateway load-balancing for wireless mesh networks. Ad Hoc Networks, 10(1), 46–61.Google Scholar
  79. 79.
    Bejerano, Y., Han, S. J., & Kumar, A. (2007). Efficient load-balancing routing for wireless mesh networks. Computer Networks, 51(10), 2450–2466.zbMATHGoogle Scholar
  80. 80.
    Liu, R. P., Sutton, G. J., & Collings, I. B. (2010). A new queueing model for QoS analysis of IEEE 802.11 DCF with finite buffer and load. IEEE Transactions on Wireless Communications, 9(8), 2664–2675.Google Scholar
  81. 81.
    Chen, M., Jin, X., Wang, Y., Cheng, X., & Min, G. (2013). Modelling priority queuing systems with varying service capacity. Frontiers of Computer Science, 7(4), 571–582.MathSciNetGoogle Scholar
  82. 82.
    Naseem, M., & Kumar, C. (2017). Queue based multiple path load balancing routing protocol for MANETs. International Journal of Communication Systems, 30(6), 31–41.Google Scholar
  83. 83.
    Le-Trung, Q., Engelstad, P. E., Skeie, T., & Taherkordi, A. (2008). Load-balance of intra/inter-MANET traffic over multiple internet gateways. In International conference on advances in mobile computing and multimedia (pp. 50–57). ACM.Google Scholar
  84. 84.
    Toh, C. K., Le, A. N., & Cho, Y. Z. (2009). Load balanced routing protocols for ad hoc mobile wireless networks. IEEE Communications Magazine, 47(8), 78–84.Google Scholar
  85. 85.
    Zhou, H., Mutka, M. W., & Ni, L. M. (2010). Secure prophet address allocation for MANETs. Security and Communication Networks, 3(1), 31–43.Google Scholar
  86. 86.
    Ghosh, U., & Datta, R. (2011). A secure dynamic IP configuration scheme for mobile ad hoc networks. Ad Hoc Networks, 9(7), 1327–1342.Google Scholar
  87. 87.
    Li, L., Cai, Y., & Xu, X. (2009). Domain based autoconfiguration framework for large scale MANETs. Wireless Communications and Mobile Computing, 9(7), 938–947.Google Scholar
  88. 88.
    Gammar, S. M., Amine, E., & Kamoun, F. (2010). Distributed address auto configuration protocol for Manet networks. Telecommunication Systems, 44(1–2), 39–48.Google Scholar
  89. 89.
    Hsu, Y. Y., & Tseng, C. C. (2005). Prime DHCP: A prime numbering address allocation mechanism for MANETs. IEEE Communications Letters, 9(8), 712–714.Google Scholar
  90. 90.
    Wang, X., & Zhong, S. (2013). Research on IPv6 address configuration for a VANET. Journal of Parallel and Distributed Computing, 73(6), 757–766.Google Scholar
  91. 91.
    Xiaonan, W., & Shan, Z. (2013). An IPv6 address configuration scheme for wireless sensor networks based on location information. Telecommunication Systems, 52(1), 151–160.Google Scholar
  92. 92.
    Thoppian, M. R., & Prakash, R. (2006). A distributed protocol for dynamic address assignment in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 5(1), 4–19.Google Scholar
  93. 93.
    Wang, X., & Qian, H. (2012). Hierarchical and low power IPv6 address configuration for wireless sensor networks. International Journal of Communication Systems, 25(12), 1513–1529.Google Scholar
  94. 94.
    Nguyen, J., & Yu, W. (2018). An SDN-based approach to support dynamic operations of multi-domain heterogeneous MANETs. In IEEE international conference on software engineering, artificial intelligence, networking and parallel/distributed computing (pp. 21–26).Google Scholar
  95. 95.
    Al-Mistarihi, M. F., Al-Shurman, M., & Qudaimat, A. (2011). Tree based dynamic address autoconfiguration in mobile ad hoc networks. Computer Networks, 55(8), 1894–1908.Google Scholar
  96. 96.
    Talipov, E., Shin, H., Han, S., & Cha, H. (2011). A lightweight stateful address autoconfiguration for 6LoWPAN. Wireless Networks, 17(1), 183–197.Google Scholar
  97. 97.
    Wang, X., & Qian, H. (2014). A tree-based address configuration for a MANET. Pervasive and Mobile Computing, 12, 123–137.Google Scholar
  98. 98.
    Reshmi, T. R., & Murugan, K. (2015). Filter-based address autoconfiguration protocol (FAACP) for duplicate address detection and recovery in MANETs. Computing, 97(3), 309–331.MathSciNetzbMATHGoogle Scholar
  99. 99.
    Shurman, M. M., Al-Mistarihi, M. F., & Darabkh, K. (2016). Dynamic distribution of security keys and IP addresses coalition protocol for mobile ad hoc networks. Automatika, 57(4), 1020–1034.Google Scholar
  100. 100.
    Reshmi, T. R., & Murugan, K. (2017). Light weight cryptographic address generation (LW-CGA) using system state entropy gathering for IPv6 based MANETs. China Communications, 14(9), 114–126.Google Scholar
  101. 101.
    Jayalalitha, B., & Reddy, P. C. (2016). Design of an ANT based routing algorithm for mobile ad-hoc networks. In IEEE international conference on communication and electronics systems (pp. 1–3).Google Scholar
  102. 102.
    Selvi, P. F. A., & Manikandan, M. S. K. (2017). Ant based multipath backbone routing for load balancing in MANET. IET Communications, 11(1), 136–141.Google Scholar
  103. 103.
    Attia, R., Rizk, R., & Mariee, M. (2009). A hybrid multi-path ant QoS routing algorithm for MANETs. In IEEE international conference on wireless and optical communications networks (pp. 1–5).Google Scholar
  104. 104.
    Wang, J., Osagie, E., Thulasiraman, P., & Thulasiram, R. K. (2009). HOPNET: A hybrid ant colony optimization routing algorithm for mobile ad hoc network. Ad Hoc Networks, 7(4), 690–705.Google Scholar
  105. 105.
    Correia, F., & Vazao, T. (2010). Simple ant routing algorithm strategies for a (multipurpose) MANET model. Ad Hoc Networks, 8(8), 810–823.Google Scholar
  106. 106.
    Singh, G., Kumar, N., & Verma, A. K. (2014). Oantalg: An orientation based ant colony algorithm for mobile ad hoc networks. Wireless Personal Communications, 77(3), 1859–1884.Google Scholar
  107. 107.
    Rosati, L., Berioli, M., & Reali, G. (2008). On ant routing algorithms in ad hoc networks with critical connectivity. Ad Hoc Networks, 6(6), 827–859.Google Scholar
  108. 108.
    Kim, S. (2012). An ant-based multipath routing algorithm for QoS aware mobile ad-hoc networks. Wireless Personal Communications, 66(4), 739–749.Google Scholar
  109. 109.
    Li, Y., Wang, Z., Wang, Q., Fan, Q., & Chen, B. (2018). Reliable ant colony routing algorithm for dual-channel mobile ad hoc networks. Wireless Communications and Mobile Computing. Scholar
  110. 110.
    Cheng, H., Yang, S., & Cao, J. (2013). Dynamic genetic algorithms for the dynamic load balanced clustering problem in mobile ad hoc networks. Expert Systems with Applications, 40(4), 1381–1392.Google Scholar
  111. 111.
    Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.Google Scholar
  112. 112.
    Mehboob, U., Qadir, J., Ali, S., & Vasilakos, A. (2016). Genetic algorithms in wireless networking: Techniques, applications, and issues. Soft Computing, 20(6), 2467–2501.Google Scholar
  113. 113.
    Kuila, P., Gupta, S. K., & Jana, P. K. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48–56.Google Scholar
  114. 114.
    Prakash, J., Kumar, R., & Saini, J. P. (2017). Path load balancing adaptive gateway discovery in MANET-internet integration using PSO. International Journal of Intelligent Engineering & System, 10(4), 235–244.Google Scholar
  115. 115.
    Qiu, T., Xia, F., Feng, L., Wu, G., & Jin, B. (2011). Queueing theory-based path delay analysis of wireless sensor networks. Advances in Electrical and Computer Engineering, 11(2), 3–8.Google Scholar
  116. 116.
    Bisnik, N., & Abouzeid, A. A. (2009). Queuing network models for delay analysis of multihop wireless ad hoc networks. Ad Hoc Networks, 7(1), 79–97.Google Scholar
  117. 117.
    Zaman, R. U., Khan, K. U. R., & Reddy, A. V. (2010). Gateway load balancing in integrated internet-MANET using WLB-AODV. In The international conference and workshop on emerging trends in technology (pp. 411–416). ACM.Google Scholar
  118. 118.
    Zhong, S., & Zhang, Y. (2013). How to select optimal gateway in multi-domain wireless networks: Alternative solutions without learning. IEEE Transactions on Wireless Communications, 12(11), 5620–5630.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.ABV-Indian Institute of Information Technology and ManagementGwaliorIndia

Personalised recommendations