Advertisement

Wireless Personal Communications

, Volume 104, Issue 3, pp 1075–1090 | Cite as

Limited Feedback Assisted Dynamic Decode-and-Forward Relaying for Multiple Access Relay Channel

  • Sudhakara Rao YepuriEmail author
  • A. S. Madhukumar
  • Rajendra Prasad Sirigina
Article
  • 14 Downloads

Abstract

Feedback about the channel state information (CSI) enables the transmitter nodes to exploit channel conditions to yield large improvements in almost any performance metric. However, in practice, channel adaptive techniques based on full CSI have been deemed impractical due to the finite capacity of the feedback links. This work considers a multiple-access relay channel (MARC) where two source nodes communicate with one destination node assisted by one half-duplex dynamic decode-and forward (DDF) relay. Using the diversity-multiplexing tradeoff as a figure-of-merit, we propose a practical limited-feedback (LF) mechanism for MARC and show that a small number of information bits about the channel conditions leads to near optimal performance. With no CSI, this system incurs diversity-gain loss at higher multiplexing gains. However, by using an LF scheme where the destination sends an ACK or NACK to the relay, we show that the optimal diversity gain can be achieved across all the multiplexing gains for the considered DDF based MARC system.

Keywords

Protocols Relays Multiplexing Diversity Diversity-multiplexing tradeoff (DMT) Limited feedback Dynamic decode-and-forward (DDF) Multiple-access relay channel (MARC) 

Notes

References

  1. 1.
    Abouelseoud, M., & Nosratinia, A. (2011). Opportunistic wireless relay networks: Diversity-multiplexing tradeoff. IEEE Transactions on Information Theory, 57(10), 6514–6538.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Azarian, K., Gamal, H. E., & Schniter, P. (2005). On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 51(12), 4152–4172.  https://doi.org/10.1109/TIT.2005.858920.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Azarian, K., Gamal, H. E., & Schniter, P. (2008). On the optimality of the ARQ-DDF protocol. IEEE Transactions on Information Theory, 54(4), 1718–1724.  https://doi.org/10.1109/TIT.2008.917722.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen, D., Azarian, K., & Laneman, J. N. (2008). A case for amplify-forward relaying in the block-fading multiple-access channel. IEEE Transactions on Information Theory, 54(8), 3728–3733.  https://doi.org/10.1109/TIT.2008.926336.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kolte, R., Özgür, A., & Diggavi, S. (2015). When are dynamic relaying strategies necessary in half-duplex wireless networks? IEEE Transactions on Information Theory, 61(4), 1720–1738.  https://doi.org/10.1109/TIT.2015.2402163.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.  https://doi.org/10.1109/TIT.2004.838089.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Love, D. J., Heath, R. W., Lau, V. K., Gesbert, D., Rao, B. D., & Andrews, M. (2008). An overview of limited feedback in wireless communication systems. IEEE Journal on Selected Areas in Communications, 26(8), 1341.CrossRefGoogle Scholar
  8. 8.
    Mohamad, A., Visoz, R., & Berthet, A. O. (2016) Outage analysis of dynamic selective decode-and-forward in slow fading wireless relay networks. In 2016 8th international congress on ultra modern telecommunications and control systems and workshops (ICUMT), IEEE (pp. 420–426).Google Scholar
  9. 9.
    Rao, Y. S., Sirigina, R. P., & Madhukumar, A. (2017). On the DMT of RF energy harvesting-based dynamic decode-and-forward relaying. IEEE Communications Letters, 21(1), 200–203.CrossRefGoogle Scholar
  10. 10.
    Sirigina, R. P., & Madhukumar, A. (2015). DMT for the relay assisted interference cancellation over Nakagami-m fading channel. In 2015 IEEE 81st vehicular technology conference (VTC Spring), IEEE (pp. 1–5).Google Scholar
  11. 11.
    Sirigina, R. P., & Madhukumar, A. (2015). On the diversity gain region for the relay assisted interference management. In 2015 IEEE 81st vehicular technology conference (VTC Spring), IEEE (pp. 1–5).Google Scholar
  12. 12.
    Sirigina, R. P., & Madhukumar, A. S. (2018). On the diversity gain region of the dynamic decode-and-forward relay-assisted Z-channel. Wireless Networks, 24(2), 395–407.CrossRefGoogle Scholar
  13. 13.
    Sirigina, R. P., Madhukumar, A., & Li, Q. (2012) Performance analysis of z-channel with relay under Rayleigh fading and discrete constellations. In 2012 IEEE wireless communications and networking conference (WCNC), IEEE (pp. 92–96).Google Scholar
  14. 14.
    Sirigina, R. P., Madhukumar, A., & Vinod, A. P. (2017). Diversity gain region of Nakagami-m faded z-channel. Circuits, Systems, and Signal Processing, 36(5), 2184–2197.CrossRefzbMATHGoogle Scholar
  15. 15.
    Tannious, R., & Nosratinia, A. (2008). Spectrally-efficient relay selection with limited feedback. IEEE Journal on Selected Areas in Communications, 26(8), 1419–1428.CrossRefGoogle Scholar
  16. 16.
    Tse, D. N. C., Viswanath, P., & Zheng, L. (2004). Diversity-multiplexing tradeoff in multiple-access channels. IEEE Transactions on Information Theory, 50(9), 1859–1874.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wu, Y. (2016). Achievable rate regions for cooperative relay broadcast channels with rate-limited feedback. In 2016 IEEE international symposium on information theory (ISIT), IEEE (pp. 1660–1664).Google Scholar
  18. 18.
    Yuksel, M., & Erkip, E. (2007). Multiple-antenna cooperative wireless systems: A diversity multiplexing tradeoff perspective. IEEE Transactions on Information Theory, 53(10), 3371–3393.  https://doi.org/10.1109/TIT.2007.904972.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sudhakara Rao Yepuri
    • 1
    Email author
  • A. S. Madhukumar
    • 2
  • Rajendra Prasad Sirigina
    • 1
  1. 1.CNCL, School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations