Advertisement

Wireless Personal Communications

, Volume 104, Issue 3, pp 949–977 | Cite as

On the Security of Relay Assisted Cognitive Radio Networks in the Presence of Primary Transceiver Network

  • Waleed Saad
  • Mona Shokair
  • Shady M. IbraheemEmail author
Article
  • 60 Downloads

Abstract

In this paper, the benefit of distinguishable diversity order within a co-operative relay system is exploited to overcome the problem of secure communication in an underlay wiretap cognitive radio network. This network is in a coexistence with a primary transceiver network and it is subjected to multiple eavesdropping attacks which employ a specific interception strategy. To improve the physical layer security, simple relay selection schemes will be proposed that aims at maximizing the minimum of the dual hop communication secrecy rates under primary network constraints. For Rayleigh fading channels, exact and asymptotic closed form expressions will be derived for the secondary system outage and secrecy rate. Furthermore, based on the network topology, tight inner and outer bounds will subsequently be derived on the system secrecy outage probability. By employing analytical and simulation results, the gain of the system diversity order is obviously investigated and emphasized.

Keywords

Relay selection Multiple eavesdroppers Co-operative eavesdroppers Outage probability Secrecy rate Power constraints 

Notes

References

  1. 1.
    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23, 201–220.CrossRefGoogle Scholar
  2. 2.
    Liu, K. J. R., Sadek, A. K., Su, W., & Kwasinski, A. (2008). Cooperative communications and networking. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  3. 3.
    Amarasuriya, G., Ardakani, M., & Tellambura, C. (2010). Output-Threshold multiple relay selection scheme for cooperative wireless networks. IEEE Transactions on Vehicular Technology, 59(6), 3091–3097.CrossRefGoogle Scholar
  4. 4.
    Ikki, S. S., & Ahmed, M. H. (2009). On the performance of amplify-and forward cooperative diversity with the nth best-relay selection scheme. In Proceedings of 2009 IEEE international conference on communications (ICC’09) (pp. 1–6).Google Scholar
  5. 5.
    Duy, T. T., An, B., & Kong, H.-Y. (2010). A novel cooperative-aided transmission in multi-hop wireless networks. IEICE Transactions on Communications, E93.B(3), 716–720.CrossRefGoogle Scholar
  6. 6.
    Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.CrossRefGoogle Scholar
  8. 8.
    Cuba, F. G., Cacheda, R. A., & Castaño, F. J. G. (2012). A survey on cooperative diversity for wireless networks. IEEE Communications Surveys & Tutorials, 14(3), 822–835.Google Scholar
  9. 9.
    Hasna, M. O., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131.CrossRefGoogle Scholar
  10. 10.
    Ikki, S., & Ahmed, M. H. (2009), Performance analysis of decode-and-forward incremental relaying cooperative diversity networks over Rayleigh fading channels. In Proceedings of IEEE VTC spring, Barcelona, April 2009 (pp. 1–6).Google Scholar
  11. 11.
    Ikki, S., Uysal, M., & Ahmed, M. H. (2009). Performance analysis of incremental-best-relay amplify-and-forward technique. In Proceedings of IEEE GLOBECOM, Honolulu, Hawaii, November 30–December 4 (pp. 1–6).Google Scholar
  12. 12.
    Krikidis, I., Thompson, J., McLaughlin, S., & Goertz, N. (2008). Amplify-and forward with partial relay selection. IEEE Communications Letters, 12(4), 235–237.CrossRefGoogle Scholar
  13. 13.
    Suraweera, H. A., Michalopoulos, D. S., & Karagiannidis, G. K. (2009). Semi blind amplify-and-forward with partial relay selection. Electronics Letters, 45(6), 317–319.CrossRefGoogle Scholar
  14. 14.
    Duy, T. T., & Kong, H.-Y. (2013). Performance analysis of incremental amplify-and-forward relaying protocols with nth best partial relay selection under interference constraint. Wireless Personal Communications, 71(4), 2741–2757.CrossRefGoogle Scholar
  15. 15.
    Gopala, P. K., Lai, L., & Gamal, H. E. (2008). On the secrecy capacity of fading channels. IEEE Transactions on Information Theory, 54(10), 4687–4698.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dong, L., Han, Z., Petropulu, A. P., & Poor, H. V. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mo, J., Tao, M., & Liu, Y. (2012). Relay placement for physical layer security: A secure connection perspective. IEEE Communications Letters, 16(6), 878–881.CrossRefGoogle Scholar
  18. 18.
    Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31(10), 2099–2111.CrossRefGoogle Scholar
  19. 19.
    Sakran, H., Shokair, M., Nasr, O., El-Rabaie, S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6(16), 2676–2687.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mukherjee, A., Fakoorian, S. A. A., Huang, J., & Swindlehurst, A. L. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys and Tutorials, 16(3), 1550–1573.CrossRefGoogle Scholar
  21. 21.
    Srinivasa, S., & Jafar, S. A. (2007). Cognitive radios for dynamic spectrum access-the throughput potential of cognitive radio: A theoretical perspective. IEEE Communications Magazine, 45(5), 73–79.CrossRefGoogle Scholar
  22. 22.
    Akyildiz, I. F., et al. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.CrossRefGoogle Scholar
  23. 23.
    Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. Proceedings of the IEEE, 97(5), 894–914.CrossRefGoogle Scholar
  24. 24.
    Tourki, K., Qaraqe, K. A., & Alouini, M. S. (2013). Outage analysis for underlay cognitive networks using incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.CrossRefGoogle Scholar
  25. 25.
    Bao, V. N. Q., Trung, N. L., & Debbah, M. (2013). Relay selection schemes for dual-hop networks under security constraints with multiple eavesdroppers. IEEE Transactions on Wireless Communications, 12(12), 6067–6085.CrossRefGoogle Scholar
  26. 26.
    Zou, Y., Champagne, B., Zhu, W. P., & Hanzo, L. (2015). Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Transactions on Communications, 63(1), 215–228.CrossRefGoogle Scholar
  27. 27.
    Jindal, A., Kundu, C., & Bose, R. (2014). Secrecy outage of dual-hop AF relay system with relay selection without eavesdropper’s CSI. IEEE Communications Letters, 18(10), 1759–1762.CrossRefGoogle Scholar
  28. 28.
    Kundu, C., Ghose, S., & Bose, R. (2015). Secrecy outage of dual-hop regenerative multi-relay system with relay selection. IEEE Transactions on Wireless Communications, 14(8), 4614–4625.CrossRefGoogle Scholar
  29. 29.
    Salhab, A., & Zummo, S. (2014). Cognitive DF generalized order relay selection networks with imperfect channel estimation and interference from primary user. In 2014 IEEE global communications conference.Google Scholar
  30. 30.
    Ghose, S., Kundu, C., & Bose, R. (2016). Secrecy performance of dual-hop decode-and-forward relay system with diversity combining at the eavesdropper. IET Communications, 10(8), 904–914.CrossRefGoogle Scholar
  31. 31.
    Dan Ngoc, P. T., Duy, T. T., Bao, V. N. Q., & Nhat, N. L. (2016). Security-reliability analysis for underlay cognitive radio networks with relay selection methods under impact of hardware noises. In 2016 International conference on advanced technologies for communications (ATC), Hanoi (pp. 174–179).Google Scholar
  32. 32.
    Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). San Diego, CA: Academic.zbMATHGoogle Scholar
  34. 34.
    Vaughan, R. J., & Venables, W. N. (1972). Permanent expressions for order statistics densities. Journal of the Royal Statistical Society Series B, 34(2), 308–310.MathSciNetzbMATHGoogle Scholar
  35. 35.
    Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (2nd ed.). New York: Wiley.Google Scholar
  36. 36.
    Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.CrossRefGoogle Scholar
  37. 37.
    Ikhlef, A., Michalopoulos, D. S., & Schober, R. (2011). Buffers improve the performance of relay selection. In Proceedings of 2011 IEEE global communications conference (pp. 1–6).Google Scholar
  38. 38.
    Chakraborty, P., & Prakriya, S. (2017). Secrecy outage performance of a cooperative cognitive relay network. IEEE Communications Letters, 21(2), 326–329.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Waleed Saad
    • 1
    • 3
  • Mona Shokair
    • 1
  • Shady M. Ibraheem
    • 1
    • 2
    Email author
  1. 1.Electronic and Electrical Communication Department, Faculty of Electronic EngineeringMenofia UniversityShebin El_KomEgypt
  2. 2.Telecom EgyptTantaEgypt
  3. 3.Electrical Engineering Department, College of EngineeringShaqra UniversityAr RiyadhKingdom of Saudi Arabia

Personalised recommendations