Advertisement

Wireless Personal Communications

, Volume 104, Issue 3, pp 881–894 | Cite as

Analysis of Sun Flower Shaped Monopole Antenna

  • Pushpendra Singh
  • Kanad Ray
  • Sanyog RawatEmail author
Article
  • 47 Downloads

Abstract

The theoretical analysis of nature inspired antenna along with measured results of fabricated prototype is presented in this work. The space between successive antenna elements in form of spirals behaves as a leakage cavity which represents incident wave’s amplitude increases by existence of seed’s cavity. Our antenna design converts incident signal into high strength signal in term of amplitude which is major requirement in satellite communication system. The proposed design has low profile and improved noise figure which enhance its suitability in satellite communication. The measured results are also found to be in concurrence with simulated results.

Keywords

Leakage resonator cavity Nature inspired Sunflower shaped Cavity resonator 

Notes

References

  1. 1.
    Singh, I., & Tripathi, V. S. (2011). Microstrip patch antenna and its application. International Journal of Computer Technology and Applications, 2(5), 1595–1599.Google Scholar
  2. 2.
    Li, Y., Zhang, Z., Zheng, J., Feng, Z., & Iskander, M. F. (2012). A compact hepta–band loop-inverted F reconfigurable antenna for mobile phone. IEEE Transactions on Antennas and Propagation, 60(1), 389–392.CrossRefGoogle Scholar
  3. 3.
    Cho, J., Jung, W., & Kim, K. (2009). Frequency—Reconfigurable two-port antenna for mobile phone operating over multiple service bands. Electronic Letter, 45, 1009–1011.CrossRefGoogle Scholar
  4. 4.
    Puri, M., Mishra, P. K., & Dhanik, S. S. (2013). Design and simulation of double ridged horn antenna operating for UWB application. In Annual IEEE conference (India).Google Scholar
  5. 5.
    Meshram, M. K., & Vishvakarma, B. R. (2001). Gap -coupled microstrip array antenna for wide-band operation. International Journal of Electronics, 88, 1161–1175.CrossRefGoogle Scholar
  6. 6.
    James, J. R., & Hall, P. S. (1989). Hand book of microstrip antennas. London: Peter Peregrinus Ltd.CrossRefGoogle Scholar
  7. 7.
    Jangid, K. G., Kulkar, V. S., Sharma, V., Tiwari, A., Sharma, B., & Bhatnagar, D. (2014). Compact circular micro-strip patch antenna with modified ground plane for broadband performance. In International conference on signal propagation and computer technology (pp. 25–28).Google Scholar
  8. 8.
    Kumar, P., & Singh, G. (2012). Advantage computational technique in electromagnetic. In 4th international conference on communication system and network technologies, IJECS-IJENS.Google Scholar
  9. 9.
    Singh, P., Ray, K., & Rawat, S. (2016). Nature inspired sunflower shaped microstrip antenna for wideband performance. International Journal of Computer Information System and Industrial management Applications (IJCISM), 8, 364–371.Google Scholar
  10. 10.
    Surjati, I., & Yuli, K. N. (2010). Increasing bandwidth dual frequency triangular micro-strip antenna for wi-max application. International Journal of Electrical & Computer Science, 10(06), 16–20.Google Scholar
  11. 11.
    Rawat, S., & Sharma, K. K. (2014). Stacked configuration of rectangular and hexagonal patches with shorting pin for circularly polarized wide band performance. Central European Journal of Engineering, 4, 20–26.Google Scholar
  12. 12.
    Vigano, M. C. (2011). Sunflower array antenna for multi-beam satellite application. Ph.D. thesis, Delft University of Technology.Google Scholar
  13. 13.
    Vogel, H. (1997). A better way to construction the sunflower head. Mathematical Bioscience, 44, 179–189.CrossRefGoogle Scholar
  14. 14.
    Ramat-samii, Y., Kovita, J. M., & Raja gopalan, H. (2012). Nature-inspired optimization technique in communication antenna design. Proceeding of the IEEE, 100(7), 2132–2144.CrossRefGoogle Scholar
  15. 15.
    Rawat, S., & Sharma, K. K. (2014). Annular ring microstrip patch antenna with finite ground plane for ultra-wideband applications. International Journal of Microwave and Wireless Technologies, 7(2), 179–184.CrossRefGoogle Scholar
  16. 16.
    Rawat, S., & Sharma, K. K. (2015). A compact broadband microstrip patch antenna with defected ground structure for C-band applications. Central European Journal of Engineering, 4(3), 287–292.Google Scholar
  17. 17.
    Ryan, G. W., Rouse, J. L., & Bursill, L. A. (1991). Quantitative analysis of sunflower seed packing. Journal of Theoretical Biology, 147, 303–328.CrossRefGoogle Scholar
  18. 18.
    Grob, V., Pfeifer, E., & Rutishause, R. R. (2007). Sympodial construction of Fibonacci-type leaf rosettes in Pinguicula moranensis (lentibulariaceae). Annals of Botany, 100(4), 857–863.CrossRefGoogle Scholar
  19. 19.
    Singh, R., Kumari, P., Singh, P., Rawat, S., & Ray, K. (2018). Novel miniaturized microstrip patch antenna for body centric wireless communication in ISM band. In M. Pant, K. Ray, T. Sharma, S. Rawat & A. Bandyopadhyay (Eds.), Soft computing: Theories and applications. Advances in intelligent systems and computing (Vol. 584, pp. 113–122). Singapore: Springer.Google Scholar
  20. 20.
    Delgado, J. A. V., & Mera, C. A. V. (2013). A bio-inspired patch antenna array using Fibonacci sequence in oak-tree. Published research report, USA.Google Scholar
  21. 21.
    Takaki, R., Ogiso, Y., Hayashi, M., & Katsu, A. (2003). Simulation of sunflower spiral and Fibonacci numbers. Tokyo: Tokyo Institute of Technology.Google Scholar
  22. 22.
    Holm, S., Austeng, A., Iranpour, K., & Hopperstad, J. F. (2001). Sparse sampling in array processing. In F. Marvasti (Ed.), Sampling theory. New York, NY: Springer.Google Scholar
  23. 23.
    Dunlap, R. A. (1997). The golden ratio and Fibonacci numbers. Singapore: World Scientific.CrossRefzbMATHGoogle Scholar
  24. 24.
    Toshniwal, S., Sharma, S., Rawat, S., Singh, P., & Ray, K. (2016). Compact design of rectangular patch antenna with symmetrical U slots on partial ground for UWB applications. In V. Snášel, A. Abraham, P. Krömer, M. Pant & A. Muda (Eds.), Innovations in bio-inspired computing and applications. Advances in intelligent systems and computing (Vol. 424, pp. 535–542). Cham: Springer.CrossRefGoogle Scholar
  25. 25.
    Rawat, S., Keshwala, U., & Ray, K. (2018). Compact design of modified pentagon shaped monopole antenna for UWB applications. International Journal of Electrical and Electronic Engineering & Telecommunications, 7(2), 66–69.CrossRefGoogle Scholar
  26. 26.
    Tawk, Y., Costantine, J., & Christodoulou, C. G. (2014). Cognitive—Radio and antenna functionalities: A tutorial [Wireless Corner]. IEEE Antenna and Propagation Magazine, 56(1), 231–243.CrossRefGoogle Scholar
  27. 27.
    Nasimuddin, N., Chen, Z. N., & Qing, X. (2016). Bandwidth enhancement of a single-feed circulary polarized antenna using a metasurface: Metamaterial-based wideband CP rectangular microstrip antenna. IEEE Antenna and Propagation Magazine, 58(2), 39–46.CrossRefGoogle Scholar
  28. 28.
    Ta, S. X., Park, I., & Ziolkowski, R. W. (2015). Crossed dipole antenna: Are view. Mobile—Phone antenna design. IEEE Antenna and Propagation Magazine, 3(3), 177–178.Google Scholar
  29. 29.
    Laxmi, Y. P., Roa, M. U., & Bahu, B. S. (2016). A dual band shaped microstrip patch antenna for 2.4 GHz and 5.4 GHz applications. IEEE Antenna and Propagation Magazine, 54(4), 14–34.Google Scholar
  30. 30.
    Chacko, B. P., Augustin, G., & Denidni, T. A. (2016). FPC antenna: C-band point-to-point communication systems. IEEE Antenna and Propagation Magazine, 58(1), 56–64.CrossRefGoogle Scholar
  31. 31.
    Bayer, H., Krauss, A., Zaiczek, T., Stephan, R., Rosenblatt, O. E., & Hein, M. A. (2016). Ka-band user terminal antenna for satellite communications [Antenna application corner] Mobile-phone antenna design. IEEE Antenna and Propagation Magazine, 54(8), 76–88.CrossRefGoogle Scholar
  32. 32.
    Singh, P., Ray, K., & Rawat, S. (2016). Design of nature inspired broadband microstrip patch antenna for satellite communication. In N. Pillay, A. Engelbrecht, A. Abraham, M. du Plessis, V. Snášel & A. Muda (Eds.), Advances in nature and biologically inspired computing (Vol. 419, pp. 369–379). Cham: Springer.CrossRefGoogle Scholar
  33. 33.
    Singh, P., Ocampo, M., Lugo, J. E., Doti, R., Faubert, J., Rawat, S., et al. (2018). Fractal and periodical biological antenna: hidden topologies in DNA. In K. Ray, M. Pant & A. Bandyopadhyay (Eds.), Soft computing applications. Studies in computational intelligence (Vol. 761, pp. 113–130). Singapore: Springer.Google Scholar
  34. 34.
    Keshwala, U., Rawat, S., Ray, K. (2018). Nature inspired dual band sneezewort plant growth pattern shaped antenna. In IEEE Asia Pacific microwave conference (APMC) (pp. 580–583).Google Scholar
  35. 35.
    Singh, P., Doti, R., Lugo, J. E., Faubert, J., Rawat, S., Ghosh, S., et al. (2018). Biological infrared antenna and radar. In M. Pant, K. Ray, T. Sharma, S. Rawat & A. Bandyopadhyay (Eds.), Soft computing: Theories and applications. Advances in intelligent systems and computing (Vol. 584, pp. 323–332). Singapore: Springer.Google Scholar
  36. 36.
    Singh, P., Ocampo, M., Lugo, J. E., Doti, R., Faubert, J., Rawat, S., et al. (2018). DNA as an electromagnetic fractal cavity resonator: Its universal sensing and fractal antenna behavior. In M. Pant, K. Ray, T. Sharma, S. Rawat & A. Bandyopadhyay (Eds.), Soft computing: Theories and applications. Advances in intelligent systems and computing (Vol. 584, pp. 213–223). Singapore: Springer.Google Scholar
  37. 37.
    Singh, P., Doti, R., Lugo, J. E., Faubert, J., Rawat, S., Ghosh, S., et al. (2018). Biological infrared antenna and radar. In M. Pant, K. Ray, T. Sharma, S. Rawat & A. Bandyopadhyay (Eds.), Soft computing: Theories and applications. Advances in intelligent systems and computing (Vol. 584, pp. 323–332). Singapore: Springer.Google Scholar
  38. 38.
    Singh, P., Ray, R., & Bandyopadhyay, A. (2018). Complete dielectric resonator model of human brain from MRI data: A journey from connectome neural branching to single protein. In K. Ray, S. N. Sharan, S. Rawat, S. K. Jain, S. Srivastava & A. Bandyopadhyay (Eds.), Lecture notes in electrical engineering (Vol. 478). Springer, ICoEVCI, India (Under press).Google Scholar
  39. 39.
    Balanis, C. A. (2005). Antenna theory analysis and design. Hoboken: Wiley.Google Scholar
  40. 40.
    Prasad, K. D., & Prakashan, S. (2001). Antennas and wave propagation (3rd ed.). New York: Tech Publications.Google Scholar
  41. 41.
    Collin, R. E. (2000). Foundations for microwave engineering (2nd ed.)., IEEE press series on electromagnetic wave theory Hoboken: Wiley.Google Scholar
  42. 42.
    Gupta, R. K., & Das, S. K. (1997). Physical properties of sunflower seeds. Journal of Agricultural Engineering Research, 66(1), 1–8.MathSciNetCrossRefGoogle Scholar
  43. 43.
    Páez, E., Callarotti, R., Azpúrua, M., & Sánchez, Y. (2014). Determination of the equivalent circuit for a cylindrical loop-coupled cavity resonator. In IEEE, CPEM 2014.Google Scholar
  44. 44.
    Heong, O. K., Hock, G. C., Chakrabarty, C. K., & Hock, G. T. (2013). Generalized equivalent circuit model for ultra wideband antenna structure with double steps for energy scavenging. In IOP conference series: Earth and environmental science, Vol. 16.Google Scholar
  45. 45.
    Ansarizadeh, M., & Ghorbani, A. (2008). An approach to equivalent circuit modeling of rectangular microstrip antennas. Progress in Electromagnetics Research B, 8, 77–86.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Amity University RajasthanJaipurIndia
  2. 2.Manipal University JaipurJaipurIndia

Personalised recommendations