Wireless Personal Communications

, Volume 104, Issue 2, pp 783–799 | Cite as

3D Modeling and Analysis of the Space–Time Correlation for 5G Millimeter Wave MIMO Channels

  • Basim Mohammed EldowekEmail author
  • Saied M. Abd El-atty
  • El-Sayed M. El-Rabaie
  • Fathi E. Abd El-Samie


The deployment of millimeter waves (mmW) in 5G mobile networks is considered as a challenging issue due to the lack of knowledge regarding the propagation of mmW in such multipath fading environments. Therefore, the analysis and modeling of such mobile fading channels is required. In this paper, we investigate the space–time correlation functions for multiple-input multiple-output (MIMO) channels in mmW frequency bands. We develop a 3-D geometry-based channel model for Rician channel to overcome the multipath fading. Such a model is able to provide a realistic channel propagation with multiple antenna elements surrounded by a scattering environment. We derive the space–time correlation functions for the scattering environments in terms of the different system parameters of the MIMO fading channel. We present the numerical evaluations to study the influence of the system parameters such as normalized time delay, vertical and horizontal antenna polarization, and separation between antenna elements on the performance of the space–time correlation functions.


5G millimeter-wave communication Channel modeling Multipath fading MIMO Space–time correlation functions 



  1. 1.
    Rappaport, T. S., et al. (2015). Millimeter wave wireless communications. Upper Saddle River: Pearson/Prentice Hall.Google Scholar
  2. 2.
    Azar, Y., Wong, G. N., Wang, K., Mayzus, R., Schulz, J. K., Zhao, H., et al. (2013). 28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City. In 2013 IEEE international conference on communications (ICC), Budapest (pp. 5143–5147).Google Scholar
  3. 3.
    MacCartney, G. R., & Rappaport, T. S. (2017). 73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City. In 2014 IEEE international conference on communications (ICC), Sydney, NSW (pp. 4862–4867).Google Scholar
  4. 4.
    MacCartney, G. R., Samimi, M. K., & Rappaport, T. S. (2014). Omnidirectional path loss models in New York City at 28 GHz and 73 GHz. In 2014 IEEE 25th annual international symposium on personal, indoor, and mobile radio communication (PIMRC), Washington DC (pp. 227–231).Google Scholar
  5. 5.
    Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. In Proceedings of the IEEE (Vol. 99, no. 8, pp. 1390–1436).Google Scholar
  6. 6.
    Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.CrossRefGoogle Scholar
  7. 7.
    3GPP TR 36.873. (2014). Study on 3D channel model for LTE. Release 12, v1.3.0, February, 2014. Accessed 25 Jan 2016.
  8. 8.
    Samimi, M. K., & Rappaport, T. S. (2014). Ultra-wideband statistical channel model for 28 GHz millimeter-wave urban NLOS environments. In 2014 IEEE global telecommunications conference, Austin, Texas.Google Scholar
  9. 9.
    Samimi, M. K., & Rappaport, T. S. (2015). 3-D statistical channel model for millimeter-wave outdoor mobile broadband communications. In 2015 IEEE international conference on communications (ICC), London (pp. 2430–2436).Google Scholar
  10. 10.
    Aulin, T. (1979). A modified model for the fading at a mobile radio channel. IEEE Transactions on Vehicular Technology, 28(3), 182–203.CrossRefGoogle Scholar
  11. 11.
    Turkmani, A. M. D., & Parsons, J. D. (1991). Characterization of mobile radio signals: Model description. In IEE proceedings I—Communications, speech and vision (Vol. 138, no. 6, pp. 549–556).Google Scholar
  12. 12.
    Abdi, A., & Kaveh, M. (2002). A space–time correlation model for multielement antenna systems in mobile fading channels. IEEE Journal on Selected Areas in Communications., 20(3), 550–560.CrossRefGoogle Scholar
  13. 13.
    Zajic, A. G., & Stuber, G. L. (2008). Three-dimensional modeling, simulation, and capacity analysis of space–time correlated mobile-to-mobile channels. IEEE Transactions on Vehicular Technology, 57(4), 2042–2054.CrossRefGoogle Scholar
  14. 14.
    Michailidis, E. T., & Kanatas, A. G. (2010). Three-dimensional HAP-MIMO channels: Modeling and analysis of space–time correlation. IEEE Transactions on Vehicular Technology, 59(5), 2232–2242.CrossRefGoogle Scholar
  15. 15.
    Stuber, G. L. (2001). Principle of mobile communication (2nd ed.). Boston, MA: Kluwer.zbMATHGoogle Scholar
  16. 16.
    Zajic, A. (2013). Mobile-to-mobile wireless channels. Norwood: Artech House.Google Scholar
  17. 17.
    Pätzold, M. (2012). Mobile radio channels (2nd ed.). Hoboken: Wiley.Google Scholar
  18. 18.
    Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space–time wireless communications. Cambridge: Cambridge University Press.Google Scholar
  19. 19.
    Zajic, A. G., & Stuber, G. L. (2008). Space–time correlated mobile-to-mobile channels: Modelling and simulation. IEEE Transactions on Vehicular Technology, 57(2), 715–726.CrossRefGoogle Scholar
  20. 20.
    Salz, J., & Winters, J. H. (1994). Effect of fading correlation on adaptive arrays in digital mobile radio. IEEE Transactions on Vehicular Technology, 43(4), 1049–1057.CrossRefGoogle Scholar
  21. 21.
    Pedersen, K. I., Mogensen, P. E., & Fleury, B. H. (1997). Power azimuth spectrum in outdoor environments. Electronics Letters, 33(18), 1583–1584.CrossRefGoogle Scholar
  22. 22.
    Clarke, R. H., & Khoo, W. L. (1997). 3-D mobile radio channel statistics. IEEE Transactions on Vehicular Technology, 46(3), 798–799.CrossRefGoogle Scholar
  23. 23.
    Taga, T. (1990). Analysis for mean effective gain of mobile antennas in land mobile radio environments. IEEE Transactions on Vehicular Technology, 39(2), 117–131.CrossRefGoogle Scholar
  24. 24.
    Kuchar, A., Rossi, J. P., & Bonek, E. (2000). Directional macro-cell channel characterization from urban measurements. IEEE Transactions on Antennas and Propagation, 48(2), 137–146.CrossRefGoogle Scholar
  25. 25.
    Gradshteyn, I. S., & Ryzhik, I. M. (1994). Table of integrals, series, and products (5th ed.). San Diego, CA: Academic.zbMATHGoogle Scholar
  26. 26.
    Clarke, R. H. (1968). A statistical theory of mobile-radio reception. Bell System Technology Journal, 47(6), 957–1000.CrossRefGoogle Scholar
  27. 27.
    Shiu, D., Foschini, G. J., Gans, M. J., & Khan, J. M. (2000). Fading correlation and its effect on the capacity of multielement antenna systems. IEEE Transaction on Communications, 48(3), 502–513.CrossRefGoogle Scholar
  28. 28.
    Leong, S. Y., Zheng, Y. R., & Xiao, C. (2004). Space–time fading correlation functions of a 3-D MIMO channel model. In Proceedings of IEEE WCNC, Atlanta, GA (Vol. 2, pp. 1127–1132).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Basim Mohammed Eldowek
    • 1
    Email author
  • Saied M. Abd El-atty
    • 1
  • El-Sayed M. El-Rabaie
    • 1
  • Fathi E. Abd El-Samie
    • 1
  1. 1.Department of Electronics and Electrical Communications Engineering, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations