Advertisement

Wireless Personal Communications

, Volume 104, Issue 2, pp 617–631 | Cite as

Novel Scheduling Based Intelligent Video Streaming for Device-to-Device Communication in Wireless Networks

  • P. Benel PrakashEmail author
  • C. Kezi Selva Vijila
Article
  • 38 Downloads

Abstract

This paper proposes a novel scheduling based intelligent video streaming for device-to-device communication in wireless networks with the consideration of time-varying system. The interference in the proposed network model is changing parameter based on time. In this network, the proposed method provides a combined power control and quality of service (QoS) with a novel methodology. The main challenge in the video streaming is time scale different of power optimization and QoS. In this paper, the considered system model is a distributed multi-user wireless network having the interference, and it has the property of time variance. The work proposed confesses power optimization or power control and quality of service in a joint manner. Therefore special attention is provided in the resource allocation. This work addressed this problem and performed these two on the same time scale using the cluster based FlashlinQ scheduling. Matlab simulations illustrate the performance of this system and are discussed in the result section.

Keywords

Video streaming Wireless networks Peak signal to noise ratio FlashlinQ algorithm Clustering Power control Quality of service 

Notes

References

  1. 1.
    Jingyu, Z., Gan, F., Minyi, G., Chunyi, P. (2016). How video streaming consumes power in 4G LTE networks. In World of wireless, mobile and multimedia networks, 21-24 June 2016 (vol. 1, pp. 1–3).  https://doi.org/10.1109/WoWMoM.2016.7523528
  2. 2.
    Negin, G., Andreas, F. M., Alexandros, G. D., & Giuseppe, C. (2013). Femto caching and device-to-device collaboration, A new architecture for wireless video distribution. IEEE International Journal, 51(4), 142–149.Google Scholar
  3. 3.
    Chang-Kuan, L., Hao-Wei, C., Shiann-Chang, Y., Meng-Ting, L., Yao, J., & Chen, H. (2006). Robust video streaming over power lines. IEEE International Journal on Power Line Communications and its Applications, 1, 196–201.Google Scholar
  4. 4.
    Jiyan, W., Chau, Y., Ngai-Man, C., Junliang, C., & Chang, W. C. (2017). Streaming mobile cloud gaming video over TCP with adaptive source-FEC coding. IEEE Transactions on Circuits and Systems for Video Technology, 1, 32–48.Google Scholar
  5. 5.
    Jiyan, W., Chau, Y., Ngai-Man, C., & Junliang, C. (2016). Delay-constrained high definition video transmission in heterogeneous wireless networks with multi-homed terminals. IEEE Transactions on Mobile Computing, 15(3), 641–655.CrossRefGoogle Scholar
  6. 6.
    Yung-Chih, C., Don, T., & Ramin, K. (2016). MSPlayer: Multi-source and multi-path video streaming. IEEE Journal on Selected Areas in Communications, 34(8), 2198–2206.CrossRefGoogle Scholar
  7. 7.
    Wei, W., & Avideh, Z. (2009). Interference aware multipath selection for video streaming in wireless ad hoc networks. IEEE Transactions on Circuits and Systems for Video Technology, 19(2), 78–165.CrossRefGoogle Scholar
  8. 8.
    Singh, S., Andrews, J. G., & de Veciana, G. (2012). Interference shaping for improved quality of experience for real-time video streaming. IEEE Journal on Selected Areas in Communications, 30(7), 1259–1269.CrossRefGoogle Scholar
  9. 9.
    Liang, Z., Xinbing, W., Wei, T., Gabriel-miro, M., Benoit, G. L., Wang, X., et al. (2010). Distributed scheduling scheme for video streaming over multi-channel multi-radio multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 28, 3.CrossRefGoogle Scholar
  10. 10.
    Wei, Y., Taesoo, K., & Changyong, S. (2013). Multicell coordination via joint scheduling, beam forming, and power spectrum adaptation. IEEE Transactions on Wireless Communications, 12(7), 1–4.CrossRefGoogle Scholar
  11. 11.
    Han-Shin, J., Cheol, M., June, M., & Jong-Gwan, Y. (2009). Interference mitigation using uplink power control for two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8, 10.Google Scholar
  12. 12.
    Jianwei, H., Zhu, L., Mung, C., & Aggelos, K. K. (2008). Joint source adaptation and resource allocation for multi-user wireless video streaming. IEEE Transactions on Circuits and Systems for Video Technology, 18(5), 582–595.CrossRefGoogle Scholar
  13. 13.
    Zhihai, H., Yongfang, L., Lulin, C., Ahmad, I., & Dapeng, W. (2005). Power-rate-distortion analysis for wireless video communication under energy constraints. IEEE Transactions on Circuits and Systems for Video Technology, 15(5), 645–658.CrossRefGoogle Scholar
  14. 14.
    Qian, Z., Wenwu, Z., & Ya-qin, Z. (2005). End-to-end QoS for video delivery over wireless Internet. Proceedings of the IEEE, 93(1), 123–134.CrossRefGoogle Scholar
  15. 15.
    Dapeng, W., Hou, Y. T., Wenwu, Z., Ya-Qin, Z., & Peha, J. M. (2001). Streaming video over the internet: Approaches and directions. IEEE Transactions on Circuits and Systems for Video Technology, 11(3), 282–300.CrossRefGoogle Scholar
  16. 16.
    Curt, S., Vijay, R., & Mani, B. S. (2003). Power management for energy-aware communication systems. ACM Transactions on Embedded Computing Systems (TECS), 2(3), 47–431.Google Scholar
  17. 17.
    Shiao-Li, T., & You-Lin, C. (2008). Energy-efficient packet scheduling algorithms for real-time communications in a mobile WiMAX system. Computer Communications, 31(10), 9–2350.Google Scholar
  18. 18.
    Guan-Ming, S., Xiao, S., Yan, B., Mea, W., Athanasios, V. V., & Haohong, W. (2016). QoE in video streaming over wireless networks: Perspectives and research challenges. Wireless Networks, 22(5), 1571–1593.CrossRefGoogle Scholar
  19. 19.
    Qi, J., Victor, C. M. L., Mahsa, T. P., Hao, T., & Hong-Sheng, X. (2016). Energy-efficient adaptive transmission of scalable video streaming in cognitive radio communications. IEEE Systems Journal, 10(2), 761–772.CrossRefGoogle Scholar
  20. 20.
    Jie, T., Haixia, Z., Dalei, W., & Dongfeng, Y. (2016). Interference-aware cross-layer design for distributed video transmission in wireless networks. IEEE Transactions on Circuits and Systems for Video Technology, 26(5), 978–991.CrossRefGoogle Scholar
  21. 21.
    Yang, C., Tao, J., Xu, C., & Junshan, Z. (2016). Social-aware video multicast based on device-to-device communications. IEEE Transactions on Mobile Computing, 15(6), 39–1528.Google Scholar
  22. 22.
    Jun-Pyo, H., & Wan, C. (2016). User prefix caching for average playback delay reduction in wireless video streaming. IEEE Transactions on Wireless Communications, 15(1), 88–377.Google Scholar
  23. 23.
    Joongheon, K., Giuseppe, C., & Andreas, F. M. (2016). Quality-aware streaming and scheduling for device-to-device video delivery”. IEEE/ACM Transactions on Networking, 24(4), 2319–2331.CrossRefGoogle Scholar
  24. 24.
    Ayaz, A., Naveed, U. H., Mohamad, A., & Hamidou, T. (2016). Joint power control and rate adaptation for video streaming in wireless networks with time-varying interference. IEEE Transactions on Vehicular Technology, 65(8), 6315–6329.CrossRefGoogle Scholar
  25. 25.
    Liang, Q., Zhengxue, C., Zheng, F., Lianghui, D., Feng, Y., & Wei, H. (2017). A QoE-driven encoder adaptation scheme for multi-user video streaming in wireless networks. IEEE Transactions on Broadcasting, 63(1), 20–31.CrossRefGoogle Scholar
  26. 26.
    Shigang, C., & Nahrstedt, K. (1999). Distributed quality-of-service routing in ad hoc networks. IEEE Journal on Selected Areas in Communications, 17(8), 1488–1505.CrossRefGoogle Scholar
  27. 27.
    Patwari, N., Hero, A. O., Perkins, M., Correal, N. S., & O’Dea, R. J. (2003). Relative location estimation in wireless sensor networks. IEEE Transactions on Signal Processing, 51(8), 2137–2148.CrossRefGoogle Scholar
  28. 28.
    Srie, V. J. E., & Ganesh, K. P. (2015). Energy efficient cluster based scheduling scheme for wireless sensor networks. The Scientific World Journal.  https://doi.org/10.1155/2015/185198.
  29. 29.
    Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.CrossRefGoogle Scholar
  30. 30.
    Xinzhou, W., Saurabha, T., & Sanjay, S. (2013). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. IEEE/ACM Transactions on Networking (TON), 21(4), 1215–1228.CrossRefGoogle Scholar
  31. 31.
    Honghai, Z., Yanyan, Z., Mohammad, A. K., & Sampath, R. (2010). Cross-layer optimization for streaming scalable video over fading wireless networks. IEEE Journal on Selected Areas in Communications, 28, 3.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bharat Sanchar Nigam Limited PhonesOddanchatramIndia
  2. 2.Christian College of Engineering and TechnologyOddanchatramIndia

Personalised recommendations