Advertisement

Wireless Personal Communications

, Volume 104, Issue 1, pp 407–421 | Cite as

A K-Band Low-Noise and High-Gain Down-Conversion Active Mixer Using 0.18-μm CMOS Technology

  • Jun-Da ChenEmail author
  • Wen-jun Wang
Article
  • 14 Downloads

Abstract

This paper fabricates a K-Band 24 GHz high-gain, low-power down-conversion mixer using a standard TSMC 0.18-μm CMOS technology. The architecture that is used is based on that of a Gilbert cell mixer. Transformer coupling technology is used at the node between the transconductance stage and the local oscillator switches stage. The conversion gain, the noise figure and the size of the chip area performance are significantly better, so this mixer with specific RF parameters gives excellent performance. The simulation (post-sim) results for the proposed mixer show a 15–19 dB power conversion gain, a − 8.3 dBm input third-order intercept point (IIP3) at 24 GHz, a 10–12.3 dB signal side band (SSB) noise figure and an RF bandwidth of 20–26 GHz. The core power consumption for the mixer is 3.096 mW and the output buffer power consumption is 3.122 mW. The total dc power consumption for this mixer, including the output buffers, is 6.22 mW. The total chip size for the K-Band mixer is 0.95 × 1.14 mm2.

Keywords

K-Band CMOS Gilber cell mixers Low noise figure IIP3 

Notes

Acknowledgements

The authors thank National Science council (NSC) for its financial support (NSC 101-2221-E-507-006), National Applied Research Laboratories National Chip Implementation Center (CIC) for its technical support, and National Nano Device Laboratory for its supporting measurement. Taiwan, ROC.

References

  1. 1.
    Issakov, V. (2010). Microwave circuits for 24 GHz automotive radar in silicon-based technologies. Berlin: Springer.CrossRefGoogle Scholar
  2. 2.
    Jain, V., & Heydari, P. (2012). Automotive radar sensors in silicon technologies. Berlin: Springer.Google Scholar
  3. 3.
    Zhao, L., & Wang, C. (2015). A novel low voltage low power high linearity self-biasing current-reuse up-conversion mixer. Wireless Personal Communications, 80(1), 277–287.CrossRefGoogle Scholar
  4. 4.
    Kia, H. B., & A’ain, A. K. (2014). A high gain and low flicker noise CMOS mixer with low flicker noise corner frequency using tunable differential active inductor. Wireless Personal Communications, 79(1), 599–610.CrossRefGoogle Scholar
  5. 5.
    Chen, J. D., & Wang, S. H. (2017). A low-power and high-gain ultra-wideband down-conversion active mixer in 0.18-μm SiGe Bi-CMOS technology. Circuits, Systems and Signal Processing, 36(7), 2635–2653.CrossRefGoogle Scholar
  6. 6.
    Chen, J. D., & Wang, S. H. (2017). A low-power, high-gain, and low-noise 802.11 a down-conversion mixer in 0.35-μm SiGe Bi-CMOS technology. Journal of Circuits, Systems and Computers, 26(9), 1750134.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wan, Q., Wang, C., & Sun, J. (2013). Design of a low voltage highly linear 2.4 GHz up-conversion mixer in 0.18 μm CMOS technology. Wireless Personal Communications, 70(1), 57–68.CrossRefGoogle Scholar
  8. 8.
    Chen, J. D. (2011). A low-voltage ultra-wideband down-conversion mixer with improved power conversion gain. International Journal of Electronics, 98(8), 1055–1073.CrossRefGoogle Scholar
  9. 9.
    Tang, C. C., Wu, C. H., Feng, W. S., & Liu, S. I. (2001). A 2.4 GHz low voltage CMOS down-conversion double-balanced mixer. IEICE Transactions on Electronics, 84(8), 1084–1091.Google Scholar
  10. 10.
    Seo, J. B., Kim, J. H., Sun, H., & Yun, T. Y. (2008). A low-power and high-gain mixer for UWB systems. IEEE Microwave and Wireless Components Letters, 18(12), 803–805.CrossRefGoogle Scholar
  11. 11.
    Pandey, S., Sahu, C., & Singh, J. (2017). A highly linear RF mixer using gate-all-around junctionless transistor. International Journal of Electronics Letters, 5(2), 129–136.CrossRefGoogle Scholar
  12. 12.
    Chen, J. D. (2011). A low-voltage high-linearity ultra-wideband down-conversion mixer in 0.18-μm CMOS technology. Microelectronics Journal, 42(1), 113–126.CrossRefGoogle Scholar
  13. 13.
    Darabi, H., & Abidi, A. A. (2000). Noise in RF-CMOS mixers: A simple physical model. IEEE Journal of Solid-State Circuits, 35(1), 15–25.CrossRefGoogle Scholar
  14. 14.
    Park, J., Lee, C. H., Kim, B. S., & Laskar, J. (2006). Design and analysis of low flicker-noise CMOS mixers for direct-conversion receivers. IEEE Transactions on Microwave Theory and Techniques, 54(12), 4372–4380.CrossRefGoogle Scholar
  15. 15.
    Chen, J. D., & Zhang, J. (2017). A 0.7 V 6.66–9.36 GHz wide tuning range CMOS LC VCO with small chip size. International Journal of Electronics, 104(10), 1763–1776.CrossRefGoogle Scholar
  16. 16.
    Long, J. R. (2000). Monolithic transformers for silicon RF IC design. IEEE Journal of Solid-State Circuits, 35(9), 1368–1382.CrossRefGoogle Scholar
  17. 17.
    Verma, A., Gao, L., & Lin, J. (2005). A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13-/spl mu/m CMOS technology. IEEE Microwave and Wireless Components Letters, 15(8), 493–495.CrossRefGoogle Scholar
  18. 18.
    Ahn, D., Kim, D. W., & Hong, S. (2009). A K-Band high-gain down-conversion mixer in 0.18 μm CMOS technology. IEEE Microwave and Wireless Components Letters, 19(4), 227–229.CrossRefGoogle Scholar
  19. 19.
    Bae, H. R., Cho, C. S., Lee, J. W., & Kim, J. (2009). A 24 GHz dual-gate mixer using sub-harmonic in 0.18 μm CMOS technology. In Asia Pacific microwave conference, 2009 (APMC 2009) (pp. 1739–1742). IEEE.Google Scholar
  20. 20.
    Chang, Y. H., Huang, C. Y., & Chiang, Y. C. (2012). A 24 GHz down-conversion mixer with low noise and high gain. In 2012 7th European microwave integrated circuits conference (EuMIC) (pp. 285–288). IEEE.Google Scholar
  21. 21.
    Beigizadeh, M., & Nabavi, A. (2014). Design of a high gain and highly linear common-gate UWB mixer in K-band. Analog Integrated Circuits and Signal Processing, 78(2), 501–509.CrossRefGoogle Scholar
  22. 22.
    Wang, S., & Chen, P. H. (2016). An active Marchand balun and its application to a 24-GHz CMOS mixer. IEEE Transactions on Components, Packaging and Manufacturing Technology, 6(10), 1535–1541.CrossRefGoogle Scholar
  23. 23.
    Chang, Y. T., Wu, H. Y., & Lu, H. C. (2016). A K-band high-gain down-converter mixer using cross couple pair active load. In 2016 11th European microwave integrated circuits conference (EuMIC) (pp. 377–380). IEEE.Google Scholar
  24. 24.
    Rastegar, H., Saryazdi, S., & Hakimi, A. (2013). A low power and high linearity UWB low noise amplifier (LNA) for 3.1–10.6 GHz wireless applications in 0.13 μm CMOS process. Microelectronics Journal, 44(3), 201–209.CrossRefGoogle Scholar
  25. 25.
    Pandey, S., Kondekar, P. N., Nigam, K., & Sharma, D. (2016). A 0.9 V, 3.1–10.6 GHz CMOS LNA with high gain and wideband input match in 90 nm CMOS process. In 2016 IEEE Asia Pacific conference on circuits and systems (APCCAS) (pp. 730–733). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic EngineeringNational Quemoy UniversityKinmenTaiwan

Personalised recommendations