Advertisement

Wireless Personal Communications

, Volume 104, Issue 1, pp 387–406 | Cite as

Differentially Private Location Privacy Preservation in Wireless Sensor Networks

  • Bodhi ChakrabortyEmail author
  • Shekhar Verma
  • Krishna Pratap Singh
Article
  • 72 Downloads

Abstract

In wireless sensor networks, the privacy of an event is critical to its safety. The location privacy of the sensor node that reports the event is imperative to the privacy of the event. Thus, privacy protection of both the event and the node that observes and reports the event is critical. In this work, we present a differentially private framework for ensuring the location privacy of a node and through it the event. The framework is based on the premise that an event occurrence is observed by multiple nodes. The transmissions triggered by an event reported by multiple nodes have low sensitivity to transmission by a single source node. If an event is reported by small number of nodes, additional dummy traffic needs to be generated for privacy of the event. Moreover, fake events are required to evade sustained observation. The privacy of an event also requires that an adversary must not be able to distinguish between real and dummy traffic. Reduced sensitivity to a single node transmission is achieved by cumulative, real and dummy traffic reporting the same event and by rendering real and fake events indistinguishable. Results indicate that dummy traffic for real and fake event ensure the differential privacy of the location of the occurrence of a node and the related event can be achieved.

Keywords

Differential privacy Location privacy Wireless sensor networks 

Notes

References

  1. 1.
    Abdel-Ghaffar, H. S. (2002). Analysis of synchronization algorithms with time-out control over networks with exponentially symmetric delays. IEEE Transactions on Communications, 50(10), 1652–1661.  https://doi.org/10.1109/TCOMM.2002.803979.CrossRefGoogle Scholar
  2. 2.
    Alomair, B., Clark, A., Cuellar, J., & Poovendran, R. (2010). Statistical framework for source anonymity in sensor networks. In Global telecommunications conference (GLOBECOM 2010).  https://doi.org/10.1109/GLOCOM.2010.5684248.
  3. 3.
    Alomair, B., Clark, A., Cuellar, J., & Poovendran, R. (2013). Toward a statistical framework for source anonymity in sensor networks. IEEE Transactions on Mobile Computing, 12(2), 248–260.  https://doi.org/10.1109/TMC.2011.267.CrossRefGoogle Scholar
  4. 4.
    Bordenabe, N. E., Chatzikokolakis, K., & Palamidessi, C. (2014). Optimal geo-indistinguishable mechanisms for location privacy. In Proceedings of the 2014 ACM SIGSAC conference on computer and communications security, CCS ’14 (pp. 251–262). New York, NY: ACM.  https://doi.org/10.1145/2660267.2660345.
  5. 5.
    Chatzikokolakis, K., Palamidessi, C., & Stronati, M. (2015). Location privacy via geo-indistinguishability. ACM SIGLOG News, 2(3), 46–69.  https://doi.org/10.1145/2815493.2815499.zbMATHGoogle Scholar
  6. 6.
    Chaum, D. L. (1981). Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM, 24(2), 84–90.  https://doi.org/10.1145/358549.358563.CrossRefGoogle Scholar
  7. 7.
    Debnath, A., Singaravelu, P., & Verma, S. (2014). Privacy in wireless sensor networks using ring signature. Journal of King Saud University-Computer and Information Sciences, 26(2), 228–236.  https://doi.org/10.1016/j.jksuci.2013.12.006.CrossRefGoogle Scholar
  8. 8.
    Deng, J., Deng, J., Han, R., Han, R., & Mishra, S. (2003). Enhancing base station security in wireless sensor networks. Technical report. University of Colorado, Department of Computer Science.Google Scholar
  9. 9.
    Deng, J., Han, R., & Mishra, S. (2006). Decorrelating wireless sensor network traffic to inhibit traffic analysis attacks. Pervasive and Mobile Computing, 2(2), 159–186.  https://doi.org/10.1016/j.pmcj.2005.12.003.CrossRefGoogle Scholar
  10. 10.
    Ebadi, H., Sands, D., & Schneider, G. (2015). Differential privacy: Now it’s getting personal. ACM Sigplan Notices, 50(1), 69–81.  https://doi.org/10.1145/2775051.2677005.CrossRefzbMATHGoogle Scholar
  11. 11.
    Fan, Y., Jiang, Y., Zhu, H., & Shen, X. (2009). An efficient privacy-preserving scheme against traffic analysis attacks in network coding. In INFOCOM 2009 (pp. 2213–2221). IEEE.  https://doi.org/10.1109/INFCOM.2009.5062146.
  12. 12.
    Gedik, B., & Liu, L. (2008). Protecting location privacy with personalized k-anonymity: Architecture and algorithms. IEEE Transactions on Mobile Computing, 7(1), 1–18.  https://doi.org/10.1109/TMC.2007.1062.CrossRefGoogle Scholar
  13. 13.
    Gurung, S., Lin, D., Jiang, W., Hurson, A., & Zhang, R. (2014). Traffic information publication with privacy preservation. ACM Transactions on Intelligent Systems and Technology, 5(3), 44:1–44:26.  https://doi.org/10.1145/2542666.CrossRefGoogle Scholar
  14. 14.
    Herrmann, M., Rial, A., Diaz, C., & Preneel, B. (2014). Practical privacy-preserving location-sharing based services with aggregate statistics. In Proceedings of the 2014 ACM conference on security and privacy in wireless & mobile networks, WiSec ’14 (pp. 87–98). New York, NY: ACM.  https://doi.org/10.1145/2627393.2627414.
  15. 15.
    Huang, J., Sun, M., Zhu, S., Sun, Y., Xing, C. C., & Duan, Q. (2015). A source-location privacy protection strategy via pseudo normal distribution-based phantom routing in WSNS. In Proceedings of the 30th annual ACM symposium on applied computing, SAC ’15 (pp. 688–694). New York, NY: ACM.  https://doi.org/10.1145/2695664.2695843.
  16. 16.
    Jian, Y., Chen, S., Zhang, Z., & Zhang, L. (2007). Protecting receiver-location privacy in wireless sensor networks. In IEEE INFOCOM 2007—26th IEEE international conference on computer communications (pp. 1955–1963).  https://doi.org/10.1109/INFCOM.2007.227.
  17. 17.
    Jian, Y., Chen, S., Zhang, Z., & Zhang, L. (2008). A novel scheme for protecting receiver’s location privacy in wireless sensor networks. IEEE Transactions on Wireless Communications, 7(10), 3769–3779.  https://doi.org/10.1109/T-WC.2008.070182.CrossRefGoogle Scholar
  18. 18.
    Kamat, P., Zhang, Y., Trappe, W., & Ozturk, C. (2005). Enhancing source-location privacy in sensor network routing. In 25th IEEE international conference on distributed computing systems (ICDCS’05) (pp. 599–608).  https://doi.org/10.1109/ICDCS.2005.31.
  19. 19.
    Kong, J., Hong, X., & Gerla, M. (2007). An identity-free and on-demand routing scheme against anonymity threats in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6(8), 888–902.  https://doi.org/10.1109/TMC.2007.1021.CrossRefGoogle Scholar
  20. 20.
    Krumm, J. (2009). A survey of computational location privacy. Personal and Ubiquitous Computing, 13(6), 391–399.  https://doi.org/10.1007/s00779-008-0212-5.CrossRefGoogle Scholar
  21. 21.
    Mehta, K., Liu, D., & Wright, M. (2012). Protecting location privacy in sensor networks against a global eavesdropper. IEEE Transactions on Mobile Computing, 11(2), 320–336.  https://doi.org/10.1109/TMC.2011.32.CrossRefGoogle Scholar
  22. 22.
    Nissim, K., Vadhan, S., & Xiao, D. (2014). Redrawing the boundaries on purchasing data from privacy-sensitive individuals. In Proceedings of the 5th conference on innovations in theoretical computer science, ITCS ’14 (pp. 411–422). New York, NY: ACM.  https://doi.org/10.1145/2554797.2554835.
  23. 23.
    Ouyang, Y., Le, X., Chen, G., Ford, J., & Makedon, F. (2006). Entrapping adversaries for source protection in sensor networks. In 2006 International symposium on a world of wireless, mobile and multimedia networks (WoWMoM’06) (pp. 10–34).  https://doi.org/10.1109/WOWMOM.2006.40.
  24. 24.
    Paruchuri, V., Durresi, A., Durresi, M., & Barolli, L. (2005). Routing through backbone structures in sensor networks. In 11th International conference on parallel and distributed systems (ICPADS’05) (Vol. 2, pp. 397–401).  https://doi.org/10.1109/ICPADS.2005.255.
  25. 25.
    Rios, R., Cuellar, J., & Lopez, J. (2015). Probabilistic receiver-location privacy protection in wireless sensor networks. Information Sciences, 321(C), 205–223.  https://doi.org/10.1016/j.ins.2015.01.016.CrossRefGoogle Scholar
  26. 26.
    Roy, P. K., Singh, J. P., Kumar, P., & Singh, M. (2015). Source location privacy using fake source and phantom routing (FSAPR) technique in wireless sensor networks. In Procedia computer science, 3rd international conference on recent trends in computing 2015 (ICRTC-2015) (Vol. 57, pp. 936–941).  https://doi.org/10.1016/j.procs.2015.07.486.
  27. 27.
    Shao, M., Yang, Y., Zhu, S., & Cao, G. (2008). Towards statistically strong source anonymity for sensor networks. In INFOCOM 2008, the 27th conference on computer communications. IEEE.  https://doi.org/10.1109/INFOCOM.2008.19.
  28. 28.
    Theodorakopoulos, G. (2015). The same-origin attack against location privacy. In Proceedings of the 14th ACM workshop on privacy in the electronic society, WPES ’15, (pp. 49–53). New York, NY: ACM.  https://doi.org/10.1145/2808138.2808150.
  29. 29.
    To, H., Ghinita, G., & Shahabi, C. (2014). A framework for protecting worker location privacy in spatial crowdsourcing. Proceedings of the VLDB Endowment, 7(10), 919–930.  https://doi.org/10.14778/2732951.2732966.CrossRefGoogle Scholar
  30. 30.
    Xiao, Y., & Xiong, L. (2015). Protecting locations with differential privacy under temporal correlations. In Proceedings of the 22Nd ACM SIGSAC conference on computer and communications security, CCS ’15 (pp. 1298–1309). New York, NY: ACM.  https://doi.org/10.1145/2810103.2813640.
  31. 31.
    Yang, Y., Shao, M., Zhu, S., Urgaonkar, B., & Cao, G. (2008). Towards event source unobservability with minimum network traffic in sensor networks. In Proceedings of the first ACM conference on wireless network security, WiSec ’08 (pp. 77–88). New York, NY: ACM.  https://doi.org/10.1145/1352533.1352547.
  32. 32.
    Zhu, Z., & Cao, G. (2013). Toward privacy preserving and collusion resistance in a location proof updating system. IEEE Transactions on Mobile Computing, 12(1), 51–64.  https://doi.org/10.1109/TMC.2011.237.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Bodhi Chakraborty
    • 1
    Email author
  • Shekhar Verma
    • 1
  • Krishna Pratap Singh
    • 1
  1. 1.Indian Institute of Information TechnologyAllahabadIndia

Personalised recommendations