Advertisement

Wireless Personal Communications

, Volume 104, Issue 1, pp 269–286 | Cite as

Sensitivity Analysis of a Class of Iris Localization Algorithms to Blurring Effect

  • Maryam Mostafa SalahEmail author
  • Sameh A. Napoleon
  • El-Sayed M. El-Rabaie
  • Fathi E. Abd El-Samie
  • Mustafa M. Abd Elnaby
Article
  • 36 Downloads

Abstract

This paper presents a study of a class of iris localization algorithms in the presence of blurring. The effect of blurring is a serious problem in most image processing systems. It may originate in iris imaging systems due to out-of-focus effect. It affects the features extracted from the iris images. Hence, the objective of this paper is to study the sensitivity of three popular iris localization algorithms to the presence of blurring. Features are extracted from normal as well as blurred iris images and used for iris localization. Moreover, Wiener filter restoration is used as a tool to combat the effect of blurring. Performance of the compared iris localization algorithms with Wiener filter restoration is also studied. Simulation results reveal that Masek iris localization algorithm has the least sensitivity to the blurring effect. Its accuracy without blurring is 88.2%, and with blurring, it decreases to 68.18%. Moreover, the Wiener filter significantly improves the accuracy of iris localization.

Keywords

Iris localization Masek code Integro-differential operator Blurring 

Notes

References

  1. 1.
    Essam, M., Fikri, M., Abd Elnaby, M., & Abd El-Samie, F. E. (2012). A fast accurate algorithm for iris localization using a coarse-to-fine approach. In JapanEgypt conference on electronics, communications and computers (pp. 75–79).Google Scholar
  2. 2.
    Wayman, J., Jain, A., Maltoni, D., & Maio, D. (2005). Biometric systems. London: Springer.CrossRefGoogle Scholar
  3. 3.
    Essam, M., Fikri, M. Abd Elnaby, M., & Abd El-Samie, F. E. (2012). An efficient iris localization algorithm. In 29th National radio science conference, Egypt (NRSC 2012), (pp. 285–292).Google Scholar
  4. 4.
    Daugman, J. (2004). How iris recognition works. IEEE Transaction on Circuits and Systems for Video Technology, 14(1), 21–30.CrossRefGoogle Scholar
  5. 5.
    Soliman, N., Essam, M., Magdi, F., Abd El-Samie, F., & AbdElnaby, M. (2016). Efficient iris localization and recognition. International Journal for Light and Electron Optics, 140, 469–475.CrossRefGoogle Scholar
  6. 6.
    Wildes, R. (1997). Iris recognition: an emerging biometric technology. Proceedings of the IEEE, 85(9), 1348–1363.CrossRefGoogle Scholar
  7. 7.
    Liu, X., Bowyer, K., & Flynn, P. (2005). Experiments with an improved iris segmentation algorithm. In Automatic identification advanced technologies. Fourth IEEE workshop.Google Scholar
  8. 8.
    Cherabit, N., Chelali, F., & Djeradi, A. (2012). Circular hough transform for iris localization. Science and Technology, 2, 114–121.CrossRefGoogle Scholar
  9. 9.
    Li, C., Xu, C., Gui, C., & Fox, M. D. (2010). Distance regularized level set evolution and its application to image segmentation. IEEE Transaction on Image Processing, 19(12), 3243–4254.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Verma, P., Dubey, M., Basu, S., & Verma, P. (2012). Hough transform method for iris recognition-A biometric approach. International Journal of Engineering and Innovative Technology (IJEIT), 1(6), 43–48.Google Scholar
  11. 11.
    Nguyen, K., Fookes, C., Jillela, R., Sridharana, S., & Ross, A. (2017). Long range iris recognition: A survey. Pattern Recognition Journal, 72, 123–143.CrossRefGoogle Scholar
  12. 12.
    Jan, F. (2016). Segmentation and localization schemes for non-ideal iris biometric systems. Signal Processing Journal, 133, 192–212.CrossRefGoogle Scholar
  13. 13.
    Jan, F. (2016). Non-circular iris contours localization in the visible wavelength eye images. Computers and Electrical Engineering Journal, 62, 1–12.CrossRefGoogle Scholar
  14. 14.
    Galdi, C., & Dugelay, J. (2017). FIRE: Fast Iris recognition on mobile phones by combining color and texture features. Pattern Recognition Letters, 91, 44–51.CrossRefGoogle Scholar
  15. 15.
    Jain, A., Ross, A., & Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Transactions on Circuits and Systems for Video Technology, 14(1), 4–20.CrossRefGoogle Scholar
  16. 16.
    Djekoune, A., Messaoudi, K., & Amara, K. (2016). Incremental circle hough transform: An improved method for circle detection. International Journal for Light and Electron Optics, 133, 17–31.CrossRefGoogle Scholar
  17. 17.
    Jiang, L., Wang, Z., Ye, Y., & Jiang, J. (2017). Fast circle detection algorithm based on sampling from difference area. International Journal for Light and Electron Optics, 158, 424–433.CrossRefGoogle Scholar
  18. 18.
    Caselles, V., Catt, F., Coil, T., & Dibos, F. (1992). A geometric model for active contours in image processing. Numerische Mathematik, 66, 1–31.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Jarjes, A., Wang, K., & Mohammed, G. (2010). Iris localization: Detecting accurate pupil contour and localizing limbus boundary. In 2nd international Asia conference on informatics in control, automation and robotics (pp. 349–352)Google Scholar
  20. 20.
    Nixon, M., & Aguado, A. (2008). Feature extraction and image processing (2nd ed.). Oxford: Elsevier’s Science & Technology Rights Department in Oxford.Google Scholar
  21. 21.
    CASIA-IrisV3 database, available at: http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp (Online, Accessed April 2015).
  22. 22.
    Masek, L. (2003). Recognition of human iris patterns for biometric identification, partial fulfillment of the requirements for the Bachelor of Engineering degree of the School of Computer Science and Software Engineering, The University of Western Australia.Google Scholar
  23. 23.
    Hsu, P., & Chen, B. (2008). Blurred image detection and classification, supported by the National Science Council of Taiwan under NSC95-2622-E-002-018.Google Scholar
  24. 24.
    Schettini, R., & Corchs, S. (2010). Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP Journal on Advances in Signal Processing. Google Scholar
  25. 25.
    Lim, J. S. (1990). Two-dimensional signal and image processing. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology.Google Scholar
  26. 26.
    Vaseghi, S. (2000) “wiener filters”, Advanced digital signal processing and noise reduction, 2nd edn, ISBNs: 0-471-62692-9 (Hardback): 0-470-84162-1 (Electronic) (pp. 178–204).Google Scholar
  27. 27.
    El-Khamy, S. E., Hadhoud, M. M., Dessouky, M. I., Sallam, B. M., & Abd El-Samie, F. E. (2005). Enhanced wiener restoration of images based on the haar wavelet transform. International Journal of Information Acquisition, 2(3), 217–226.CrossRefGoogle Scholar
  28. 28.
    El-khamy, S., Saad, E., Hadhoud, M., Dessouky, M. I., Abbas, A. M., & Abd El-Samie, F. E. (2005). A modified wiener filter for multi-frame restoration of blurred and noisy images. International Journal of Information Acquisition, 2(2), 123–135.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maryam Mostafa Salah
    • 1
    Email author
  • Sameh A. Napoleon
    • 1
  • El-Sayed M. El-Rabaie
    • 2
  • Fathi E. Abd El-Samie
    • 2
  • Mustafa M. Abd Elnaby
    • 1
  1. 1.Faculty of EngineeringTanta UniversityTantaEgypt
  2. 2.Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations