Advertisement

Wireless Personal Communications

, Volume 104, Issue 1, pp 129–148 | Cite as

Design Implementation of Concentric Loops with Stubs Metamaterial Absorber

  • Dhawan Singh
  • Viranjay M. Srivastava
Article
  • 95 Downloads

Abstract

A novel design for passive tuned concentric loops with stubs metamaterial absorbers (MMA) has been proposed for microwave regime. This proposed MMA consists of two concentric loops separated by stubs and modified with rectangular bars. The proposed MMA structure shows versatility in design and tuned between Ku-band and X-band just by varying the length of shorted stubs and rectangular bar. The MMA structure has been found highly insensitive to oblique angle of incidence and polarization for TE and TM modes of the electromagnetic wave. The total thickness of the modified designed absorber is only 0.0092 λ0, where λ0 is the free-space wavelength at the resonant frequency. The simulated results are well matched with the measured results. The widespread potential applications of the proposed structure are found in antenna design for the reduction of radar cross section suitable for stealth technology along with radar and other communication areas.

Keywords

Concentric loops Ku-band Metamaterial absorber (MMA) Radar cross section (RCS) X-band 

Notes

References

  1. 1.
    Singh, D., & Srivastava, V. M. (2018). Low radar cross section of patch antenna using shorted stubs metamaterial absorber. International Journal of Microwave and Optical Technology (IJMOT), 13(3), 194–202.Google Scholar
  2. 2.
    Lee, J., Yoon, Y. J., & Lim, S. (2012). Ultra-thin polarization independent absorber using hexagonal interdigital metamaterial. Electronics and Telecommunications Research Institute Journal (ETRI), 34(1), 126–129.Google Scholar
  3. 3.
    Singh, D., & Srivastava, V. M. (2018). Dual resonances shorted stub circular rings metamaterial absorber. AUE-International Journal of Electronics and Communication, 83, 58–66.Google Scholar
  4. 4.
    Tao, H., Bingham, C. M., Strikwerda, A. C., Pilon, D., Shrekenhamer, D., Landy, N. I., et al. (2008). Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characteristics. Physical Review B, 78(24), 031–034.CrossRefGoogle Scholar
  5. 5.
    Bharti, G., Singh, G., Jha, K. R., & Jyoti, R. (August 8–10, 2013). Circular ring frequency selective surface: A novel synthesis technique. In 6th international conference on contemporary computing (IC3) (pp. 491–496). Noida.Google Scholar
  6. 6.
    Ayop, O., Rahim, M. K. A., Murad, N. A., & Samsuri, N.A. (December 8–10, 2014). Polarization insensitive and wide operating angle metamaterial absorber at X-band. In IEEE Asia-Pacific conference on applied electromagnetics (APACE2014). Johor Bahru.Google Scholar
  7. 7.
    Patel, S. K., Argyropoulos, C., & Kosta, Y. P. (2016). Broadband compact microstrip patch antenna design loaded by multiple split ring resonator superstrate and substrate. Waves in Random and Complex Media, 27(1), 92–102.CrossRefGoogle Scholar
  8. 8.
    Baviskar, J., Mulla, A., Baviskar, A., Auti, D., & Waghmare, R. (March 5–12, 2016). Performance enhancement of microstrip patch antenna array with incorporation of metamaterial lens. In IEEE aerospace conference (pp. 1–10). Yellowstone.Google Scholar
  9. 9.
    Li, Y., Zhang, K., Yang, L. A., & Du, L. (2017). Gain enhancement and wideband RCS reduction of a microstrip antenna using triple-band planar electromagnetic band-gap structure. Progress in Electromagnetics Research Letters, 65, 103–108.CrossRefGoogle Scholar
  10. 10.
    Zhao, Y., Gao, J., Cao, X., Liu, T., Xu, L., Liu, X., et al. (2017). In-band RCS reduction of waveguide slot array using metasurface bars. IEEE Transactions on Antennas and Propagation, 65(2), 943–947.CrossRefGoogle Scholar
  11. 11.
    Singh, D., & Srivastava, V. M. (2018). An analysis of RCS for dual-band slotted patch antenna with a thin dielectric using shorted stubs metamaterial absorber. AUE-International Journal of Electronics and Communication, 90, 53–62.Google Scholar
  12. 12.
    Li, W., & Valentine, J. (2014). Metamaterial perfect absorber based hot electron photodetection. Nano Letters, 14(6), 3510–3514.CrossRefGoogle Scholar
  13. 13.
    Astorino, M. D., Frezza, F., & Tedeschi, N. (2017). Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime. Journal of Applied Physics, 121, 1031–10310.CrossRefGoogle Scholar
  14. 14.
    Zhang, J., Wang, G., Zhang, B., He, T., He, Y., & Shen, J. (2016). Photo-excited broadband tunable terahertz metamaterial absorber. Optical Materials, 54, 32–36.CrossRefGoogle Scholar
  15. 15.
    Ma, B., Liu, S., Kong, X., Jiang, Y., Xu, J., & Yang, H. (2016). A novel wide-band tunable metamaterial absorber based on varactor diode/graphene. Optik-International Journal for Light and Electron Optics, 127(5), 3039–3043.CrossRefGoogle Scholar
  16. 16.
    Li, J., Jiang, J., He, Y., Xu, W., Chen, M., Miao, L., et al. (2016). Design of a tunable low-frequency and broadband radar absorber based on active frequency selective surface. IEEE Antennas and Wireless Propagation Letters, 15, 774–777.CrossRefGoogle Scholar
  17. 17.
    Qi, L., Li, C., & Fang, G. (2014). Tunable terahertz metamaterial absorbers using active diodes. International Journal of Electromagnetics and Applications, 4(3), 57–60.Google Scholar
  18. 18.
    Yuan, H., Zhu, B., Zhao, J., & Feng, Y. (October 23–25, 2013). Metamaterial absorber with active frequency tuning in X-band. In Proceedings of the international symposium on antennas and propagation (ISAP) (pp. 1219–1221). Nanjing.Google Scholar
  19. 19.
    Ucar, M. H. B., Sondas, A., & Erdemli, Y. E. (2008). Switchable split-ring frequency selective surfaces. Progress in Electromagnetics Research B, 6, 65–79.CrossRefGoogle Scholar
  20. 20.
    Chen, X., Grzegorczyk, T. M., Wu, B. I., Pacheco, J., & Kong, J. A. (2004). Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E, 70, 6081–6087.Google Scholar
  21. 21.
    Watts, C. M., Liu, X., & Padilla, W. J. (2012). Metamaterial electromagnetic wave absorbers. Advanced Optical Materials, 24(23), OP98–OP120.Google Scholar
  22. 22.
    Dai, S., Zhao, D., Li, Q., & Qiu, M. (2013). Double-sided polarization-independent plasmonic absorber at near-infrared region. Optics Express, 21(11), 13125–13133.CrossRefGoogle Scholar
  23. 23.
    Liu, W. (January 29–31, 2015). The study status and development of metamaterial absorber. In International conference on logistics engineering, management and computer science (LEMCS 2015) (pp. 1318–1322). Shenyang.Google Scholar
  24. 24.
    Singh, D., & Srivastava, V. M. (January 5–7, 2017). Triple band regular decagon shaped metamaterial absorber for X-band applications. In IEEE international conference on computer communication and informatics (ICCCI-2017) (pp. 411–415). Coimbatore.Google Scholar
  25. 25.
    Smith, D. R., Vier, D. C., Koschny, T., & Soukoulis, C. M. (2005). Electromagnetic parameter retrieval from inhomogeneous metamaterials. Physical Review E, 71, 6171–61711.Google Scholar
  26. 26.
    Padooru, Y. R., Yakovlev, A. B., Kaipa, C. S. R., Medina, F., & Mesa, F. (2011). Circuit modeling of multiband high-impedance surface absorbers in the microwave regime. Physical Review B, 84, 1081-11.CrossRefGoogle Scholar
  27. 27.
    Qiaoxia, G., Xiaomin, L., Zhiyong, D., Xiaoqiang, S., Fengying, M., & Erjun, L. (2013). Study on absorbing properties and mechanism of cross-shaped metamaterial absorber. Infrared and Laser Engineering, 42(6), 1528–1532.Google Scholar
  28. 28.
    Landy, N. I., Bingham, C. M., Tyler, T., Jokerst, N., Smith, D. R., & Padilla, W. J. (2009). Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging. Physical Review B, 79, 1041–1046.CrossRefGoogle Scholar
  29. 29.
    Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R., & Padilla, W. J. (2008). Perfect metamaterial absorber. Physical Review Letter, 100(20), 1–4.CrossRefGoogle Scholar
  30. 30.
    Tao, H. (2008). Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization. Physical Review B, 78, 1031–1034.Google Scholar
  31. 31.
    Li, D., Szabo, Z., Qing, X., Li, P., & Chen, Z. N. (2012). A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Transactions on Antennas and Propagation, 60(12), 6018–6023.CrossRefGoogle Scholar
  32. 32.
    Szabo, Z., Park, G. H., Hedge, R., & Li, P. (2010). A unique extraction of metamaterial parameters based on Kramers–kronig relationship. IEEE Transactions on Microwave Theory and Techniques, 58(10), 2046–2653.CrossRefGoogle Scholar
  33. 33.
    Parazzoli, C. G., Greegor, R. B., & Tanielian, M. H. (2007). Physics of negative refraction and negative index materials (Vol. 98, pp. 261–329). Berlin: Springer.CrossRefGoogle Scholar
  34. 34.
    Zarifi, D., Soleimani, M., & Nayyeri, V. (2012). Parameter retrieval of chiral metamaterials based on the causality principle. International Journal of RF and Microwave Computer-Aided Engineering, 23(5), 610–618.CrossRefGoogle Scholar
  35. 35.
    Ghosh, S., Bhattacharyya, S., Chaurasiya, D., & Srivastava, K. V. (2015). An ultrawideband ultrathin metamaterial absorber based on circular split rings. IEEE Antennas and Wireless Propagation Letters, 14(1), 1172–1175.CrossRefGoogle Scholar
  36. 36.
    Lee, J., & Lim, S. (2011). Bandwidth-enhanced and polarization-insensitive metamaterial absorber using double resonance. Electronics Letters, 47(1), 8–9.CrossRefGoogle Scholar
  37. 37.
    Liu, Y., Gu, S., Luo, C., & Zhao, X. (2012). Ultra-thin broadband metamaterial absorber. Applied Physics A, 108(1), 19–24.CrossRefGoogle Scholar
  38. 38.
    Soheilifar, M. R., & Sadeghzadeh, R. A. (2014). Design, fabrication and characterisation of scaled and stacked layers planar metamaterial absorber. IET Microwaves, Antennas and Propagation, 9(1), 86–93.CrossRefGoogle Scholar
  39. 39.
    Cheng, Y., Yang, H., Cheng, Z., & Wu, N. (2011). Perfect metamaterial absorber based on a split-ring-cross resonator. Applied Physics A, 102(1), 99–103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical, Electronic and Computer EngineeringUniversity of KwaZulu-NatalDurbanSouth Africa

Personalised recommendations