Advertisement

Wireless Personal Communications

, Volume 103, Issue 4, pp 3163–3180 | Cite as

An Energy Efficient Framework for Densely Distributed WSNs IoT Devices Based on Tree Based Robust Cluster Head

  • S. K. Sathya Lakshmi Preetha
  • R. Dhanalakshmi
  • R. Kumar
Article
  • 49 Downloads

Abstract

There is a developing effect of WSNs (wireless Sensor Networks) on genuine applications. Various plans have been proposed for gathering information on multipath routing, tree, clustering and cluster trees. Existing schemes can’t give an ensured dependable system to versatility, movement, and end-to-end association, separately. Such kind of problems to be moderate, the proposed scheme considers a densely distributed WSN system model related to Internet-of-Things (IoT) and tree based cluster formation depending upon sensor node deployment density. For each tree based cluster having one cluster head node to attain energy efficient data gathering, a reinforcement learning based fuzzy inference system (RL-FIS) will applied to determine the data gathering node for every cluster present in the densely distributed WSNs based on three metrics: neighbourhood overlap, bipartivity index and algebraic connectivity. We compare our proposed scheme with the other schemes. Simulation results indicate that our proposed scheme outperform the other schemes in overall energy consumption saving and prolong the lifetime of the network.

Keywords

Wireless sensor networks Internet of things Energy efficient data gathering Fuzzy inference system Reinforcement learning 

Notes

References

  1. 1.
    Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. K. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.CrossRefGoogle Scholar
  2. 2.
    Zheng, J., Bhuiyan, M. Z., Liang, S., Xing, X., & Wang, G. (2014). Auction-based adaptive sensor activation algorithm for target tracking in wireless sensor networks. Future Generation Computer Systems, 39, 88–99.CrossRefGoogle Scholar
  3. 3.
    Shen, H., & Bai, G. (2016). Routing in wireless multimedia sensor networks: A survey and challenges ahead. Journal of Network and Computer Applications, 71, 30–49.CrossRefGoogle Scholar
  4. 4.
    Abdollahzadeh, S., & Navimipour, N. J. (2016). Deployment strategies in the wireless sensor network: A comprehensive review. Computer Communications, 91, 1–6.CrossRefGoogle Scholar
  5. 5.
    Gu, Y., Ren, F., Ji, Y., & Li, J. (2016). The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials., 18(1), 507–524.CrossRefGoogle Scholar
  6. 6.
    Bhuiyan, M. Z., Wang, G., & Vasilakos, A. V. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRefGoogle Scholar
  8. 8.
    Rathore, H., Badarla, V., & Shit, S. (2016). Consensus-aware sociopsychological trust model for wireless sensor networks. ACM Transactions on Sensor Networks (TOSN)., 12(3), 21.CrossRefGoogle Scholar
  9. 9.
    Ren, J., Zhang, Y., Zhang, K., Liu, A., Chen, J., & Shen, X. S. (2016). Lifetime and energy hole evolution analysis in data-gathering wireless sensor networks. IEEE Transactions on Industrial Informatics, 12(2), 788–800.CrossRefGoogle Scholar
  10. 10.
    Kaswan, A., Nitesh, K., & Jana, P. K. (2017). Energy efficient path selection for mobile sinkand data gathering in wireless sensor networks. AEU-International Journal of Electronics and Communications, 73(1), 110–118.CrossRefGoogle Scholar
  11. 11.
    Logambigai, R., & Kannan, A. (2016). Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Networks, 22(3), 945–957.CrossRefGoogle Scholar
  12. 12.
    Abbasi-Daresari, S., & Abouei, J. (2016). Toward cluster-based weighted compressive data aggregation in wireless sensor networks. Ad Hoc Networks, 36, 368–385.CrossRefGoogle Scholar
  13. 13.
    Zhang, D., Zhou, Z., Mumtaz, S., Rodriguez, J., & Sato, T. (2016). One integrated energy efficiency proposal for 5G IoT communications. IEEE Internet of Things Journal, 3(6), 1346–1354.CrossRefGoogle Scholar
  14. 14.
    Xie, R., & Jia, X. (2014). Transmission-efficient clustering method for wireless sensor networks using compressive sensing. IEEE Transactions on Parallel and Distributed Systems, 25(3), 806–815.CrossRefGoogle Scholar
  15. 15.
    Wang, C. F., Shih, J. D., Pan, B. H., & Wu, T. Y. (2014). A network lifetime enhancement method for sink relocation and its analysis in wireless sensor networks. IEEE Sensors Journal, 14(6), 1932–1943.CrossRefGoogle Scholar
  16. 16.
    Dong, M., Ota, K., & Liu, A. (2016). RMER: Reliable and energy-efficient data collection for large-scale wireless sensor networks. IEEE Internet of Things Journal, 3(4), 511–519.CrossRefGoogle Scholar
  17. 17.
    Haseeb, K., Bakar, K. A., Abdullah, A. H., & Darwish, T. (2017). Adaptive energy aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 23(6), 1953–1966.CrossRefGoogle Scholar
  18. 18.
    Velmani, R., & Kaarthick, B. (2015). An efficient cluster-tree based data collection scheme for large mobile wireless sensor networks. IEEE Sensors Journal, 15(4), 2377–2390.CrossRefGoogle Scholar
  19. 19.
    Biason, A., Pielli, C., Rossi, M., Zanella, A., Zordan, D., Kelly, M., et al. (2017). EC-CENTRIC: An energy-and context-centric perspective on IoT systems and protocol design. IEEE Access, 10, 2169–3536.Google Scholar
  20. 20.
    Nguyen, T. D., Khan, J. Y., & Ngo, D. T. (2017). Energy harvested roadside IEEE 802.15. 4 wireless sensor networks for IoT applications. Ad Hoc Networks, 56, 109–121.CrossRefGoogle Scholar
  21. 21.
    Suresh, A., Reyana, A., & Varatharajan, R. (2018). CEMulti-core architecture for optimization of energy over heterogeneous environment with high performance smart sensor devices. Wireless Personal Communications.  https://doi.org/10.1007/s11277-018-5504-0.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. K. Sathya Lakshmi Preetha
    • 1
  • R. Dhanalakshmi
    • 1
  • R. Kumar
    • 1
  1. 1.Department of CSENIT NagalandChumukedima, DimapurIndia

Personalised recommendations