Sum Ergodic Capacity Analysis Using Asymptotic Design of Massive MU-MIMO Systems

  • Ahmad Kamal Hassan
  • Muhammad Moinuddin
  • Ubaid M. Al-Saggaf
Article
  • 21 Downloads

Abstract

This communication attempts to characterize the performance metrics of downlink Massive MU-MIMO systems impaired by cochannel interference and additive noise over a Rayleigh fading environment. We obtain close-form solutions for the probability density function of signal-to-interference-plus-noise ratio (SINR) and the sum ergodic capacity. The proposed work structures SINR in a quadratic form and thereby imposes a condition on its signal and interference power for a large transmit antenna diversity order; the conditional form is then analyzed using a distance correlation metric. Eventually, the sum ergodic capacity is expressed in a close-form by means of a residue theory approach and validated using the Monte Carlo simulation means.

Keywords

Ergodic capacity Residue theory Weighted sum of chi-square Antenna diversity SINR analysis 

Notes

Acknowledgements

This project was funded by the Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, under Grant No. (CEIES-16-12-02). The authors, therefore, acknowledge the technical and financial support of CEIES.

References

  1. 1.
    Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRefGoogle Scholar
  2. 2.
    Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on selected Areas in Communications, 31(2), 160–171.CrossRefGoogle Scholar
  3. 3.
    Zheng, K., Zhao, L., Mei, J., Shao, B., Xiang, W., & Hanzo, L. (2015). Survey of large-scale MIMO systems. IEEE Communications Surveys & Tutorials, 17(3), 1738–1760.CrossRefGoogle Scholar
  4. 4.
    Li, X., Zhou, L., Jin, S., & Gao, X. (2012). Multi-user multiple-input single-output downlink transmission systems exploiting statistical channel state information. IET Communications, 6(18), 3114–3121.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Kim, H., Lee, S. R., Lee, K. J., & Lee, I. (2012). Transmission schemes based on sum rate analysis in distributed antenna systems. IEEE Transactions on Wireless Communications, 11(3), 1201–1209.CrossRefGoogle Scholar
  6. 6.
    Li, J. H., & Su, H. J. (2014). Opportunistic feedback reduction for multiuser MIMO broadcast channel with orthogonal beamforming. IEEE Transactions on Wireless Communications, 13(3), 1321–1333.CrossRefGoogle Scholar
  7. 7.
    Choi, W., & Andrews, J. G. (2007). Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Transactions on Wireless Communications, 6(1), 69–73.CrossRefGoogle Scholar
  8. 8.
    Székely, G. J., Rizzo, M. L., Bakirov, N. K., et al. (2007). Measuring and testing dependence by correlation of distances. The Annals of Statistics, 35(6), 2769–2794.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Al-Naffouri, T. Y., Moinuddin, M., Ajeeb, N., Hassibi, B., & Moustakas, A. L. (2016). On the distribution of indefinite quadratic forms in Gaussian random variables. IEEE Transactions on Communications, 64(1), 153–165.CrossRefGoogle Scholar
  10. 10.
    Al-Naffouri, T., Sharif, M., & Hassibi, B. (2009). How much does transmit correlation affect the sum-rate scaling of MIMO Gaussian broadcast channels? IEEE Transactions on Communications, 57(2), 562–572.CrossRefGoogle Scholar
  11. 11.
    Hassan, A. K., Moinuddin, M., Al-Saggaf, U. M., & Al-Naffouri, T. Y. (2017). Performance analysis of beamforming in MU-MIMO systems for Rayleigh fading channels. IEEE Access, 5, 3709–3720.CrossRefGoogle Scholar
  12. 12.
    Dai, M., & Clerckx, B. (2015). Transmit beamforming for MISO broadcast channels with statistical and delayed CSIT. IEEE Transactions on Communications, 63(4), 1202–1215.CrossRefGoogle Scholar
  13. 13.
    Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large array. IEEE Signal Processing Magazine, 30(1), 40–60.CrossRefGoogle Scholar
  14. 14.
    Gradštejn, I. S., Ryžik, I. M., Jeffrey, A., & Zwillinger, D. (2007). Table of integrals, series, and products. New York: Elsevier/Academic.Google Scholar
  15. 15.
    Bjornson, E., Hammarwall, D., & Ottersten, B. (2009). Exploiting quantized channel norm feedback through conditional statistics in arbitrarily correlated MIMO systems. IEEE Transactions on Signal Processing, 57(10), 4027–4041.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahmad Kamal Hassan
    • 1
    • 2
  • Muhammad Moinuddin
    • 2
    • 3
  • Ubaid M. Al-Saggaf
    • 2
    • 3
  1. 1.Faculty of Electrical EngineeringGhulam Ishaq Khan Institute of Engineering Sciences and TechnologyTopiPakistan
  2. 2.Center of Excellence in Intelligent Engineering Systems (CEIES)King Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Electrical and Computer EngineeringKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations