Wireless Personal Communications

, Volume 100, Issue 1, pp 177–191 | Cite as

A System-Level Simulator for the Downlink of LTE-A: Case of Study—Cell-Offloading in HetNets

  • Alberto Carreras
  • Isabel M. Delgado-Luque
  • Francisco J. Martín-Vega
  • Gerardo Gómez
  • Mari Carmen Aguayo-Torres
  • J. Tomás Entrambasaguas
Article
  • 43 Downloads

Abstract

In this paper, we present a novel and efficient data-flow oriented simulation platform for the downlink of Long Term Evolution Advanced (LTE-A). This tool accounts for a wide set of configuration parameters from LTE-A physical and medium access control layers as well as different traffic sources. The simulator, which is implemented in C++, does not consider any link abstraction mechanism, leading to accurate and realistic results. As a case of study, we investigate the performance of cell-offloading for different deployments of small cell base stations that differ in the distance towards their nearest macro base station under File Transfer Protocol type traffic. Additionally, the impact of the spatial user distribution on the performance of cell-offloading is assessed. Results reveal that aggregated throughput is maximized when macro base stations are highly offloaded, which means that a high bias for cell association is advisable in terms of aggregated throughput. However, if the fairness among users is also taken into account, the selected bias for cell-offloading should be smaller.

Keywords

Simulator LTE-A Heterogeneous cellular systems Offloading Cell range expansion 

References

  1. 1.
    Carreras, A., Aguayo-Torres, M. C., Martin-Vega, F. J., Gomez, G., Blanquez, F., Delgado-Luque, I. M., & Entrambasaguas, J. T. (2018). Link abstraction models for multicarrier systems: A logistic regression approach. International Journal of Communication Systems.  https://doi.org/10.1002/dac.3436 Google Scholar
  2. 2.
    Mehlfhrer, C., Colom Ikuno, J., Šimko, M., Schwarz, S., Wrulich, M., & Rupp, M. (2011). The Vienna LTE simulators-enabling reproducibility in wireless communications research. EURASIP Journal on Advances in Signal Processing, 2011(1), 29.  https://doi.org/10.1186/1687-6180-2011-29.CrossRefGoogle Scholar
  3. 3.
    Virdis, A., Stea, G., & Nardini, G. (2014). SimuLTE – A modular system-level simulator for LTE/LTE-A networks based on OMNeT++. In 2014 4th International Conference On Simulation And Modeling Methodologies, Technologies And Applications (SIMULTECH), pp. 59–70. https://doi.org/10.5220/0005040000590070.
  4. 4.
    Piro, G., Grieco, L. A., Boggia, G., Capozzi, F., & Camarda, P. (2011). Simulating LTE cellular systems: An open-source framework. IEEE Transactions on Vehicular Technology, 60(2), 498–513.  https://doi.org/10.1109/TVT.2010.2091660.CrossRefGoogle Scholar
  5. 5.
    Baldo, N., Miozzo, M., Requena-Esteso, M., & Nin-Guerrero, J. (2011). An open source product-oriented LTE network simulator based on ns-3. In Proceedings of the 14th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. ACM, New York, MSWiM ’11, pp. 293–298. https://doi.org/10.1145/2068897.2068948.
  6. 6.
    Aguayo-Torres, M.C. et Al. (2016). WM-SIM LTE link simulator version 2. Tech. rep., Universidad de Málaga. https://riuma.uma.es/xmlui/handle/10630/11057?show=full.
  7. 7.
    Andrews, J. G., Singh, S., Ye, Q., Lin, X., & Dhillon, H. S. (2014). An overview of load balancing in hetnets: Old myths and open problems. IEEE Wireless Communications, 21(2), 18.  https://doi.org/10.1109/MWC.2014.6812287.CrossRefGoogle Scholar
  8. 8.
    Singh, S., & Andrews, J. (2014). Joint resource partitioning and offloading in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 13(2), 888.  https://doi.org/10.1109/TWC.2013.120713.130548.CrossRefGoogle Scholar
  9. 9.
    Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10.  https://doi.org/10.1109/MWC.2011.5876496.CrossRefGoogle Scholar
  10. 10.
    Ali, M. S., Coucheney, P., & Coupechoux, M. (2016). Load balancing in heterogeneous networks based on distributed learning in near-potential games. IEEE Transactions on Wireless Communications, 15(7), 5046.  https://doi.org/10.1109/TWC.2016.2551744.Google Scholar
  11. 11.
    Martin-Vega, F. J., Gomez, G., Aguayo-Torres, M. C., & Renzo, M. D. (2016). Analytical modeling of interference aware power control for the uplink of heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 15(10), 6742.  https://doi.org/10.1109/TWC.2016.2588469..CrossRefGoogle Scholar
  12. 12.
    Martin-Vega, F. J., Delgado-Luque, I. M., Gomez, G., Aguayo-Torres, M. C., & Entrambasaguas, J. T. (2016). Downlink power setting for energy efficient heterogeneous cellular networks. In 2016 8th International congress on ultra modern telecommunications and control systems and workshops (ICUMT), pp. 147–151. https://doi.org/10.1109/ICUMT.2016.7765348.
  13. 13.
    Delgado-Luque, I. M., Aguayo-Torres, M. C., Gómez, G., & Entrambasaguas, J. T. (2017). A framework to evaluate fairness in fractional frequency reuse based cellular networks. Wireless Personal Communications, 95(2), 287.  https://doi.org/10.1007/s11277-016-3892-6.CrossRefGoogle Scholar
  14. 14.
    Xie, M., Ye, W., Feng, S., & Song, H. (2005). Performance of a queuing model with Pareto input traffic for wireless network nodes. In Proceedings of international conference on wireless communications, networking and mobile computing, 2005, Vol. 2, pp. 867–870.  https://doi.org/10.1109/WCNM.2005.1544188.
  15. 15.
    Sesia, S., Toufik, I., & Baker, M. (2009). LTE, The UMTS long term evolution: From theory to practice. New York: Wiley Publishing.CrossRefGoogle Scholar
  16. 16.
    Martin-Vega, F., Blanquez-Casado, F., Lopez-Martinez, F., Gomez, G., & Entrambasaguas, J. (2015). Further improvements in SOVA for high-throughput parallel turbo decoding. IEEE Communications Letters, 19(1), 6.  https://doi.org/10.1109/LCOMM.2014.2371041.CrossRefGoogle Scholar
  17. 17.
    Han, B., & Zheng, Y. R. (2015). Higher rank principal Kronecker model for triply selective fading channels with experimental validation. IEEE Transactions on Vehicular Technology, 64(5), 1654.  https://doi.org/10.1109/TVT.2014.2332518.CrossRefGoogle Scholar
  18. 18.
    Delgado-Luque, I. M., Blanquez-Casado, F., Fuertes, M. G., Gomez, G., Aguayo-Torres, M. C., Entrambasaguas, J. T., & Baños, J. (2012). Evaluation of latency-aware scheduling techniques for M2M traffic over LTE. In Proceedings of the 20th European signal processing conference (EUSIPCO), pp. 989–993.Google Scholar
  19. 19.
    3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects. TR 36.814, 3rd Generation Partnership Project (3GPP) (2017).Google Scholar
  20. 20.
    3GPP, Technical Specification Group Radio Access Network; Coordinated multi-point operation for LTE physical layer aspects. TR 36.819, 3rd Generation Partnership Project (3GPP) (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alberto Carreras
    • 1
  • Isabel M. Delgado-Luque
    • 1
  • Francisco J. Martín-Vega
    • 1
  • Gerardo Gómez
    • 1
  • Mari Carmen Aguayo-Torres
    • 1
  • J. Tomás Entrambasaguas
    • 1
  1. 1.Dpto. de Ingeniería de ComunicacionesUniversidad de MálagaMálagaSpain

Personalised recommendations