Advertisement

Wireless Personal Communications

, Volume 102, Issue 4, pp 3041–3053 | Cite as

The Probabilistic Model and Forecasting of Power Load Based on Variational Bayesian Expectation Maximization and Relevance Vector Machine

  • Wegen GaoEmail author
  • Qigong Chen
  • Yuan Ge
  • YiQing Huang
Article

Abstract

As the surging demands of secure power supply and reliable power system, the power load approximation and forecasting are becoming more significant and more important. Different from the current research work, we integrate power load approximation and forecasting based on the Gaussian mixture model and relevance vector machine. In order to estimate the parameters of GMM, the variational bayesian expectation maximization algorithm are employed. Based on the estimation results, the relevance vector machine and bayesian regression model are built to forecast the power load and its labels. The simulation results show that the proposed algorithms can closely approximate the power load profiles and forecast the power load with lower errors.

Keywords

Power load Gaussian mixture model (GMM) Variational bayesian expectation maximization (VBEM) Relevance vector machine (RVM) Bayesian regression model 

Notes

Acknowledgements

The work is supported by the Natural Science Foundation of China (61572032), Key Natural Science Research Project of Anhui Province (KJ2017A107).

References

  1. 1.
    Amin, S. M., & Wollenberg, B. F. (2005). Toward a smart grid: Power delivery for the 21st century. IEEE Power and Energy Magazine, 3(5), 34–41.CrossRefGoogle Scholar
  2. 2.
    Santacana, E., Rackliffe, G., Tang, L., & Feng, X. (2010). Getting smart. IEEE Power and Energy Magazine, 8(2), 41–48.CrossRefGoogle Scholar
  3. 3.
    Ghosh, A. K., Lubkeman, D. L., Downey, M. J., & Jones, R. H. (1997). Distribution circuit state estimation using a probabilistic approach. IEEE Transactions on Power Systems, 12(1), 45–51.CrossRefGoogle Scholar
  4. 4.
    Heunis, S. W., & Herman, R. (2002). A probabilistic model for residential consumer loads. IEEE Transactions on Power Systems, 17(3), 621–625.CrossRefGoogle Scholar
  5. 5.
    Balestrassi, P., Paiva, A., de Souza, A. Z., Turrioni, J., & Popova, E. (2011). A multivariate descriptor method for change-point detection in nonlinear time series. Journal of Applied Statistics, 38(2), 327–342.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Seppãlã, A. (1995). Statistical distribution of customer load profiles. In 1995 Proceedings of EMPD’95., 1995 International Conference on Energy Management and Power Delivery, 1995 (Vol. 2, pp. 696–701), IEEE.Google Scholar
  7. 7.
    Tina, G., Gagliano, S., & Raiti, S. (2006). Hybrid solar/wind power system probabilistic modelling for long-term performance assessment. Solar Energy, 80(5), 578–588.CrossRefGoogle Scholar
  8. 8.
    Li, W., Zhou, J., Lu, J., & Yan, W. (2007). Incorporating a combined fuzzy and probabilistic load model in power system reliability assessment. IEEE Transactions on Power Systems, 22(3), 1386–1388.CrossRefGoogle Scholar
  9. 9.
    Singh, R., Pal, B., & Jabr, R. (2010). Distribution system state estimation through Gaussian mixture model of the load as pseudo-measurement. IET Generation, Transmission & Distribution, 4(1), 50–59.CrossRefGoogle Scholar
  10. 10.
    Li, H.-Z., Guo, S., Li, C.-J., & Sun, J.-Q. (2013). A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm. Knowledge-Based Systems, 37, 378–387.CrossRefGoogle Scholar
  11. 11.
    Dong, R., & Pedrycz, W. (2008). A granular time series approach to long-term forecasting and trend forecasting. Physica A: Statistical Mechanics and Its Applications, 387(13), 3253–3270.CrossRefGoogle Scholar
  12. 12.
    Niu, D., Wang, Y., & Wu, D. D. (2010). Power load forecasting using support vector machine and ant colony optimization. Expert Systems with Applications, 37(3), 2531–2539.CrossRefGoogle Scholar
  13. 13.
    Sorjamaa, A., Hao, J., Reyhani, N., Ji, Y., & Lendasse, A. (2007). Methodology for long-term prediction of time series. Neurocomputing, 70(16), 2861–2869.CrossRefGoogle Scholar
  14. 14.
    Al-Hamadi, H., & Soliman, S. (2005). Long-term/mid-term electric load forecasting based on short-term correlation and annual growth. Electric Power Systems Research, 74(3), 353–361.CrossRefGoogle Scholar
  15. 15.
    Reis, A. R., & Da Silva, A. A. (2005). Feature extraction via multiresolution analysis for short-term load forecasting. IEEE Transactions on Power Systems, 20(1), 189–198.CrossRefGoogle Scholar
  16. 16.
    Wang, J., Li, L., Niu, D., & Tan, Z. (2012). An annual load forecasting model based on support vector regression with differential evolution algorithm. Applied Energy, 94, 65–70.CrossRefGoogle Scholar
  17. 17.
    Pai, P.-F., & Hong, W.-C. (2005). Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management, 46(17), 2669–2688.CrossRefGoogle Scholar
  18. 18.
    Pappas, S. S., Ekonomou, L., Karamousantas, D. C., Chatzarakis, G., Katsikas, S., & Liatsis, P. (2008). Electricity demand loads modeling using autoregressive moving average (arma) models. Energy, 33(9), 1353–1360.CrossRefGoogle Scholar
  19. 19.
    Pappas, S. S., Ekonomou, L., Karampelas, P., Karamousantas, D., Katsikas, S., Chatzarakis, G., et al. (2010). Electricity demand load forecasting of the hellenic power system using an arma model. Electric Power Systems Research, 80(3), 256–264.CrossRefGoogle Scholar
  20. 20.
    Vlachogiannis, J. G. (2009). Probabilistic constrained load flow considering integration of wind power generation and electric vehicles. IEEE Transactions on Power Systems, 24(4), 1808–1817.CrossRefGoogle Scholar
  21. 21.
    Kandil, M., El-Debeiky, S., & Hasanien, N. (2001). The implementation of long-term forecasting strategies using a knowledge-based expert system: part-ii. Electric Power Systems Research, 58(1), 19–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Wegen Gao
    • 1
    • 2
  • Qigong Chen
    • 2
  • Yuan Ge
    • 2
  • YiQing Huang
    • 2
  1. 1.School of Internet of Things EngineeringJiangnan UniversityWuxiChina
  2. 2.AnHui Polytechnic UniversityWuHuChina

Personalised recommendations