Wireless Personal Communications

, Volume 97, Issue 3, pp 4573–4585 | Cite as

Design and Optimization of PSI (Ψ) Slotted Fractal Antenna Using ANN and GA for Multiband Applications

  • Gagandeep KaurEmail author
  • Munish Rattan
  • Chahat Jain


A novel design of PSI (Ψ) slotted fractal antenna that exhibits multiband operation has been used for optimization in this paper which enhanced its utilities for distinct bands. The empirical fact is that return loss is optimized after applying Artificial Neural Network and Genetic Algorithm. The proposed fractal antenna has been designed using substrate material of RT/Duroid having height of substrate 1.5 mm, dielectric constant 2.2 and loss tangent 0.0009 for the stage of iteration up to one. The simulated, optimized and experimental results are obtained by the use of Zeland IE3D software, MATLAB Software and Rohde and Schwarz ZVL Vector Network Analyzer respectively. The measured values of return loss which obtained after fabrication are −13.81, −19.88, −20.86, and −27.33 dB for the resonant frequencies 1.89, 2.78, 4.40, and 5.72 GHz and the values of their respective VSWR are 1.52, 1.25, 1.21 and 1.12. The output values obtained after simulation and fabrication have minute variations but are found to be a good candidate for applications in the bands of L, S and C.


Artificial Neural Network (ANN) Fractal Genetic Algorithm (GA) Iteration Optimization PSI (Ψ) slotted geometry 


  1. 1.
    Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: Freeman.CrossRefGoogle Scholar
  2. 2.
    Werner, D. H., Haup, R. L., & Werner, P. L. (1999). Fractal antenna engineering: The theory and design of fractal antenna arrays. IEEE Antennas and Propagation Magazine, 41(5), 37–58.CrossRefGoogle Scholar
  3. 3.
    Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, 45(1), 38–57.CrossRefGoogle Scholar
  4. 4.
    Gianvittorio, J. P., & Samii, Y. R. (2002). Fractal antennas: A novel antenna miniaturization technique, and applications. IEEE Antennas Propagation Magazine, 44(1), 20–36.CrossRefGoogle Scholar
  5. 5.
    Baliarda, C. P., Romeu, J., & Cardama, A. (2000). The Koch monopole: A small fractal antenna. IEEE Transaction on Antennas and Propagation, 48(11), 1773–1781.CrossRefGoogle Scholar
  6. 6.
    Kim, I. W., Yoo, T., Yook, J., & Park, H. (2001). The Koch Island fractal microstrip patch antenna. In IEEE antennas and propagation society international symposium, Boston, MA (Vol. 2, pp. 736–739).Google Scholar
  7. 7.
    Li, J., Jiang, T., Cheng, C., & Wang, C. (2013). Hilbert fractal antenna for UHF detection of partial discharges in transformers. IEEE Transactions on Dielectrics and Electrical Insulation, 20(6), 2017–2024.CrossRefGoogle Scholar
  8. 8.
    Puente, C., Romeu, J., Pous, R., & Cardama, A. (1998). On the behavior of the Sierpinski multiband fractal antenna. IEEE Transaction on Antennas and Propagation, 46(4), 517–524.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chowdary, P. S. R., Prasad, A. M., Rao, P. M., & Anguera, J. (2015). Design and performance study of Sierpinski fractal based patch antennas for multiband and miniaturization characteristics. Wireless Personal Communications, 83(2), 1713–1730. doi: 10.1007/s11277-015-2472-5.CrossRefGoogle Scholar
  10. 10.
    Rahim, M. K. A., Abdullah, N., & Aziz, M. Z. A. A. (2005). Microstrip Sierpinski carpet antenna design. In IEEE AsiaPacific conference on applied electromagnetics (pp. 58–61).Google Scholar
  11. 11.
    Chen, W. L., Wang, G. M., & Zhang, C. X. (2008). Small-size microstrip patch antennas combining Koch and Sierpinski fractal shapes. IEEE Antennas and Wireless Propagation Letters, 7, 738–741.CrossRefGoogle Scholar
  12. 12.
    Werner, D., Gregory, M., Jiang, Z. H., & Brocker, D. E. (2015). Optimization methods in antenna engineering. Handbook of Antenna Technologies. doi: 10.1007/978-981-4560-75-7_15-1.CrossRefGoogle Scholar
  13. 13.
    Kaur, R., & Rattan, M. (2014). Optimization of return loss of differentially fed microstrip patch antenna using ANN and firefly algorithm. Wireless Personal Communications, 80(4), 1547–1556. doi: 10.1007/s11277-014-2099-y.CrossRefGoogle Scholar
  14. 14.
    Dhaliwal, B. S., & Pattnaik, S. S. (2013). Artificial neural network analysis of Sierpinski Gasket fractal antenna: A low cost alternative to experimentation. Advances in artificial neural systems (Vol. 2013, pp. 1–7). Cairo: Hindawi Publishing Corporation.Google Scholar
  15. 15.
    Ozkaya, U., & Seyfi, L. (2015). Dimension optimization of microstrip patch antenna in X/Ku band via artificial neural network. In Procedia-social and behavioral sciences, world conference on technology, innovation and entrepreneurship (Vol. 195, pp. 2520–2526).Google Scholar
  16. 16.
    Kumar, K. A., Ashwath, R., Kumar, D. S., & Malmathanraj, R. (2010). Optimization of multislotted rectangular microstrip patch antenna using ANN and bacterial foraging optimization. In IEEE AsiaPacific international symposium on electromagnetic compatibility, Beijing (pp. 449–452).Google Scholar
  17. 17.
    Herscovici, N., Osorio, M. F., & Peixeiro, C. (2002). Miniaturization of rectangular microstrip patches using genetic algorithms. IEEE Antennas and Wireless Propagation Letters, 1(1), 94–97.CrossRefGoogle Scholar
  18. 18.
    Neyestanak, A. A. L., Kashani, F. H., & Barkeshli, K. (2007). W-shaped enhanced-bandwidth patch antenna for wireless communication. Wireless Personal Communications, 43(4), 1257–1265. doi: 10.1007/s11277-007-9299-7.CrossRefGoogle Scholar
  19. 19.
    Lukes, Z., & Raida, Z. (2005). Multi-objective optimization of wire antennas: Genetic algorithms versus particle swarm optimization. Radioengineering, 14(4), 91–97.Google Scholar
  20. 20.
    Kumari, U. R., Rao, P. M., & Raju, G. S. N. (2016). Generation of optimized beams from concentric circular antenna array with dipole elements using BAT Algorithm. In S. Satapathy, N. Rao, S. Kumar, C. Raj, V. Rao & G. Sarma (Eds.), Microelectronics, electromagnetics and telecommunications, lecture notes in electrical engineering (Vol. 372, pp. 547–557). New Delhi: Springer.Google Scholar
  21. 21.
    Primson, K. P. R. C., & Anita, R. (2014). Antenna design for wimax applications using Artificial Bee Colony algorithm. Journal of Theoretical and Applied Information Technology, 68(3), 493–503.Google Scholar
  22. 22.
    Sharma, S. K., & Shafai, L. (2007). Investigations of a novel Ψ-shape microstrip patch antenna with wide impedance bandwidth. In IEEE antennas and propagation society international symposium, Honolulu, HI (pp. 881–884).Google Scholar
  23. 23.
    Sharma, S. K., & Shafai, L. (2009). Performance of a novel Ψ-shape microstrip patch antenna with wide bandwidth. IEEE Antennas and Wireless Propagation Letters, 8, 468–471.CrossRefGoogle Scholar
  24. 24.
    Deshmukh, A. A., & Ray, K. P. (2013). Analysis of broadband Psi (Ψ)-shaped microstrip antennas. IEEE Antennas and Propagation Magazine, 55(2), 107–123.CrossRefGoogle Scholar
  25. 25.
    Kaur, G., Jain, C., & Rattan, M. (2016). A novel multiband Psi (Ψ) slotted fractal antenna for S-band applications. In IEEE international conference on computing, communication and automation, Galgotias University, Greater Noida, UP.Google Scholar
  26. 26.
    Balanis, C. A. (1997). Antenna theory, analysis and design (2nd ed.). New York: Wiley.Google Scholar
  27. 27.
    IE3D version 14.0. (2008). Fremont, CA: Zeland Software Inc.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringGuru Nanak Dev Engineering College LudhianaLudhianaIndia

Personalised recommendations