Wireless Personal Communications

, Volume 97, Issue 3, pp 4467–4491 | Cite as

Precise Indoor Positioning Using UWB: A Review of Methods, Algorithms and Implementations

  • Fazeelat MazharEmail author
  • Muhammad Gufran Khan
  • Benny Sällberg


The demand and growth of indoor positioning has increased rapidly in the past few years for a diverse range of applications. Various innovative techniques and technologies have been introduced but precise and reliable indoor positioning still remains a challenging task due to dependence on a large number of factors and limitations of the technologies. Positioning technologies based on radio frequency (RF) have many advantages over the technologies utilizing ultrasonic, optical and infrared devices. Both narrowband and wideband RF systems have been implemented for short range indoor positioning/real-time locating systems. Ultra wideband (UWB) technology has emerged as a viable candidate for precise indoor positioning due its unique characteristics. This article presents a comparison of UWB and narrowband RF technologies in terms of modulation, throughput, transmission time, energy efficiency, multipath resolving capability and interference. Secondly, methods for measurement of the positioning parameters are discussed based on a generalized measurement model and, in addition, widely used position estimation algorithms are surveyed. Finally, the article provides practical UWB positioning systems and state-of-the-art implementations. We believe that the review presented in this article provides a structured overview and comparison of the positioning methods, algorithms and implementations in the field of precise UWB indoor positioning, and will be helpful for practitioners as well as for researchers to keep abreast of the recent developments in the field.


UWB Positioning RSSI TOA AOA 


  1. 1.
    Xiao, J., Liu, Z., Yang, Y., Liu, D., & Han, X. (2011). Comparison and analysis of indoor wireless positioning techniques. In 2011 International conference on computer science and service system (CSSS) (pp. 293–296). IEEE.Google Scholar
  2. 2.
    Mautz, R., & Tilch, S. (2011). Survey of optical indoor positioning systems. In IPIN (pp. 1–7).Google Scholar
  3. 3.
    Want, R., Hopper, A., Falcao, V., & Gibbons, J. (1992). The active badge location system. ACM Transactions on Information Systems (TOIS), 10(1), 91–102.CrossRefGoogle Scholar
  4. 4.
    Challamel, R., Tom, P., Harmer, D., & Beauregard, S. (2008). Performance assessment of indoor location technologies. In 2008 IEEE/ION position, location and navigation symposium (pp. 624–632). IEEE.Google Scholar
  5. 5.
    Mitilineos, S. A., Kyriazanos, D. M., Segou, O. E., Goufas, J. N., & Thomopoulos, S. C. (2010). Indoor localisation with wireless sensor networks. Progress in Electromagnetics Research, 109, 441–474.CrossRefGoogle Scholar
  6. 6.
    Gezici, S., Tian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., et al. (2005). Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine, 22(4), 70–84.CrossRefGoogle Scholar
  7. 7.
    Fontana, R. J. (2004). Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Transactions on Microwave Theory Techniques, 52(9), 2087–2104.CrossRefGoogle Scholar
  8. 8.
    Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., & Siwiak, K. (2005). A comprehensive model for ultrawideband propagation channels. In 2005. GLOBECOM’05. IEEE global telecommunications conference (Vol. 6, p. 6-pp). IEEE.Google Scholar
  9. 9.
    Win, M. Z., & Scholtz, R. A. (1998). Impulse radio: How it works. IEEE communications Letters, 2(2), 36–38.CrossRefGoogle Scholar
  10. 10.
    Ingram, S. J., Harmer, D., & Quinlan, M. (2004). Ultrawideband indoor positioning systems and their use in emergencies. In 2004. PLANS 2004 position location and navigation symposium (pp. 706–715). IEEE.Google Scholar
  11. 11.
    Guvenc, I., Gezici, S., & Sahinoglu, Z. (2008). Ultra-wideband range estimation: Theoretical limits and practical algorithms. In 2008. ICUWB 2008. IEEE international conference on ultra-wideband (Vol. 3, pp. 93–96). IEEE.Google Scholar
  12. 12.
    Caffery, J. J, Jr. (2006). Wireless location in CDMA cellular radio systems (Vol. 535). Berlin: Springer.Google Scholar
  13. 13.
    Farid, Z., Nordin, R., & Ismail, M. (2013). Recent advances in wireless indoor localization techniques and system. Journal of Computer Networks and Communications, 2013, 1–12.Google Scholar
  14. 14.
    Zhang, D., Xia, F., Yang, Z., Yao, L., & Zhao, W. (2010). Localization technologies for indoor human tracking. In 2010 5th International conference on future information technology (FutureTech) (pp. 1–6). IEEE.Google Scholar
  15. 15.
    Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems. I. Characterization. IEEE Communications Magazine, 35(9), 136–146.CrossRefGoogle Scholar
  16. 16.
    Ghavami, M., Michael, L. B., & Kohno, R. (2004). Front matter. Hoboken: Wiley.CrossRefGoogle Scholar
  17. 17.
    Di Benedetto, M. G. (2006). UWB communication systems: A comprehensive overview (Vol. 5). Cairo: Hindawi Publishing Corporation.CrossRefGoogle Scholar
  18. 18.
    Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Hoboken: Wiley.zbMATHGoogle Scholar
  19. 19.
    Park, C., & Rappaport, T. S. (2007). Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee. IEEE wireless communications, 14(4), 70–78.CrossRefGoogle Scholar
  20. 20.
    Foerster, J., Green, E., Somayazulu, S., Leeper, D., Intel Architecture Labs, Intel Architecture Labs, Intel Corp., & Intel Corp. (2001). Ultra-wideband technology for short-or medium-range wireless communications. Intel Technology Journal, 2, 2001.Google Scholar
  21. 21.
    Lee, J. S., Su, Y. W., & Shen, C. C. (2007). A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In 2007. IECON 2007. 33rd annual conference of the IEEE industrial electronics society (pp. 46–51). IEEE.Google Scholar
  22. 22.
    Telatar, I. E., & Tse, D. N. (2000). Capacity and mutual information of wideband multipath fading channels. IEEE Transactions on Information Theory, 46(4), 1384–1400.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ren, Q., & Liang, Q. (2008). Throughput and energy-efficiency-aware protocol for ultrawideband communication in wireless sensor networks: A cross-layer approach. IEEE transactions on mobile computing, 7(6), 805–816.CrossRefGoogle Scholar
  24. 24.
    Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. Hoboken: Wiley.Google Scholar
  25. 25.
    Barras, D., Ellinger, F., & Jckel, H. (2002). A comparison between ultrawideband and narrowband transceivers. Proceedings TRLabs/IEEE Wireless, 2002, 211–214.Google Scholar
  26. 26.
    Sheng, H., Orlik, P., Haimovich, A. M., Cimini Jr, L. J., & Zhang, J. (2003). On the spectral and power requirements for ultra-wideband transmission. In 2003. ICC’03. IEEE international conference on communications (Vol. 1, pp. 738–742). IEEE.Google Scholar
  27. 27.
    Masood, R. F. (2013). Adaptive Modulation. (QPSK, QAM).Google Scholar
  28. 28.
    Zhang, C., Kuhn, M., Merkl, B., Fathy, A. E., & Mahfouz, M. (2006). Accurate UWB indoor localization system utilizing time difference of arrival approach. In 2006 IEEE radio and wireless symposium.Google Scholar
  29. 29.
    Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems Man, and Cybernetics, Part C: Applications and Reviews, 37(6), 1067–1080.CrossRefGoogle Scholar
  30. 30.
    Du, K. L., & Swamy, M. N. (2010). Wireless communication systems: From RF subsystems to 4G enabling technologies. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. 31.
    Ramirez-Mireles, F., & Scholtz, R. A. (1998). Multiple-access with time hopping and block waveform PPM modulation. In 1998. ICC 98. Conference record. 1998 IEEE international conference on communications (Vol. 2, pp. 775–779). IEEE.Google Scholar
  32. 32.
    Neelakanta, P. S., & Dighe, H. (2003, November). Robust factory wireless communications: A performance appraisal of the Bluetooth and the ZigBee colocated on an industrial floor. In 2003. IECON’03. The 29th annual conference of the IEEE industrial electronics society (Vol. 3, pp. 2381–2386). IEEE.Google Scholar
  33. 33.
    Sikora, A., & Groza, V. F. (2005). Coexistence of IEEE802. 15.4 with other Systems in the 2.4 GHz-ISM-Band. In 2005. IMTC 2005. Proceedings of the IEEE instrumentation and measurement technology conference (Vol. 3, pp. 1786–1791). IEEE.Google Scholar
  34. 34.
    Miller, L. E. (2003). Why UWB? A review of ultrawideband technology. National Institute of Standards and Technology. DARPA, 1–72Google Scholar
  35. 35.
    Al Nuaimi, K., & Kamel, H. (2011). A survey of indoor positioning systems and algorithms. In 2011 International conference on innovations in information technology (IIT) (pp. 185–190). IEEE.Google Scholar
  36. 36.
    Althaus, F., Troesch, F., & Wittneben, A. (2005). UWB geo-regioning in rich multipath environment. In IEEE vehicular technology conference (Vol. 62, No. 2, p. 1001). IEEE; 1999.Google Scholar
  37. 37.
    Nerguizian, C., Despins, C., & Affes, S. (2001). A framework for indoor geolocation using an intelligent system. In 3rd IEEE Workshop on WLANs (pp. 1–38).Google Scholar
  38. 38.
    Nerguizian, C., Despins, C., & Affs, S. (2006). Geolocation in mines with an impulse response fingerprinting technique and neural networks. IEEE Transactions on Wireless Communications, 5(3), 603–611.CrossRefGoogle Scholar
  39. 39.
    Triki, M., Slock, D., Rigal, V., & Franois, P. (2006). Mobile terminal positioning via power delay profile fingerprinting: Reproducible validation simulations. In 2006. VTC-2006 Fall. 2006 IEEE 64th vehicular technology conference (pp. 1–5). IEEE.Google Scholar
  40. 40.
    Gezici, S., & Poor, H. V. (2009). Position estimation via ultra-wide-band signals. Proceedings of the IEEE, 97(2), 386–403.CrossRefGoogle Scholar
  41. 41.
    Xu, J., Ma, M., & Law, C. L. (2008). Position estimation using ultra-wideband time difference of arrival measurements. IET Science, Measurement and Technology, 2(1), 53–58.CrossRefGoogle Scholar
  42. 42.
    Chang, C., & Sahai, A. (2004). Estimation bounds for localization. In 2004. IEEE SECON 2004. 2004 first annual IEEE communications society conference on sensor and ad hoc communications and Networks (pp. 415–424). IEEE.Google Scholar
  43. 43.
    Qi, Y., & Kobayashi, H. (2002). Cramer-Rao lower bound for geolocation in non-line-of-sight environment. In 2002 IEEE international conference on acoustics, speech, and signal processing (ICASSP) (Vol. 3, pp. III–2473). IEEE.Google Scholar
  44. 44.
    Sengijpta, S. K. (1995). Fundamentals of statistical signal processing: Estimation theory. Technometrics, 37(4), 465–466.CrossRefGoogle Scholar
  45. 45.
    Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. 46.
    Qi, Y. (2003).Wireless geolocation in a non-line-of-sight environment (Doctoral dissertation, Ph. D. dissertation, Princeton University, Princeton, NJ).Google Scholar
  47. 47.
    Sahinoglu, Z., & Catovic, A. (2004). A hybrid location estimation scheme (H-LES) for partially synchronized wireless sensor networks. In 2004 IEEE international conference on communications (Vol. 7, pp. 3797–3801). IEEE.Google Scholar
  48. 48.
    Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O, III., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.CrossRefGoogle Scholar
  49. 49.
    Pahlavan, K., Li, X., & Mkel, J. P. (2002). Indoor geolocation science and technology. IEEE Communications Magazine, 40(2), 112–118.CrossRefGoogle Scholar
  50. 50.
    Soganci, H., Gezici, S., & Poor, H. V. (2011). Accurate positioning in ultra-wideband systems. IEEE Wireless Communications, 18(2), 19–27.CrossRefGoogle Scholar
  51. 51.
    Mailaender, L. (2007). Comparing geo-location bounds for TOA, TDOA, and round-trip TOA. In 2007. PIMRC 2007. IEEE 18th international symposium on personal, indoor and mobile radio communications (pp. 1–5). IEEE.Google Scholar
  52. 52.
    Xu, J., Ma, M., & Law, C. L. (2011). Performance of time-difference-of-arrival ultra wideband indoor localisation. IET Science, Measurement and Technology, 5(2), 46–53.CrossRefGoogle Scholar
  53. 53.
    Zekavat, R., & Buehrer, R. M. (2011). Handbook of position location: Theory, practice and advances (Vol. 27). Hoboken: Wiley.CrossRefGoogle Scholar
  54. 54.
    Kang, D., Namgoong, Y., Yang, S., Choi, S., & Shin, Y. (2006, February). A simple asynchronous UWB position location algorithm based on single round-trip transmission. In 2006. ICACT 2006. The 8th international conference advanced communication technology (Vol. 3, p. 4-pp). IEEE.Google Scholar
  55. 55.
    Guven, I., & Chong, C. C. (2009). A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Communications Surveys and Tutorials, 11(3), 107–124.CrossRefGoogle Scholar
  56. 56.
    Kaune, R. (2012). Accuracy studies for TDOA and TOA localization. In 2012 15th International conference on information fusion (FUSION) (pp. 408–415). IEEE.Google Scholar
  57. 57.
    Peng, R., & Sichitiu, M. L. (2006). Angle of arrival localization for wireless sensor networks. In 2006. SECON’06. 2006 3rd Annual IEEE communications cociety on sensor and ad hoc communications and networks (Vol. 1, pp. 374–382). IEEE.Google Scholar
  58. 58.
    Laoufi, M., Heddebaut, M., Cuvelier, M., Rioult, J., & Rouvaen, J. M. (2000). Positioning emergency calls along roads and motorways using a GSM dedicated cellular radio network. In 2000. IEEE-VTS Fall VTC 2000. 52nd vehicular technology conference (Vol. 5, pp. 2039–2046). IEEE.Google Scholar
  59. 59.
    Kaiser, T., & Zheng, F. (2010). Ultra wideband systems with MIMO. Hoboken: Wiley.CrossRefGoogle Scholar
  60. 60.
    Mallat, A., Louveaux, J., & Vandendorpe, L. (2007). UWB based positioning in multipath channels: CRBs for AOA and for hybrid TOA-AOA based methods. In 2007. ICC’07. IEEE international conference on communications (pp. 5775–5780). IEEE.Google Scholar
  61. 61.
    Thomas, N. J., Cruickshank, D. G. M., & Laurenson, D. I. (2001). Performance of a TDOA-AOA hybrid mobile location system. In 2001. Second international conference on 3G mobile communication technologies (Conf. Publ. No. 477) (pp. 216–220). IET.Google Scholar
  62. 62.
    Catovic, A., & Sahinoglu, Z. (2004). Hybrid TOA/RSS and TDOA/RSS location estimation schemes for short-range wireless networks. Bechtel Telecommunication Technical Journal (BTTJ), 2(2), 77–84.Google Scholar
  63. 63.
    Taponecco, L., D’Amico, A. A., & Mengali, U. (2011). Joint TOA and AOA estimation for UWB localization applications. IEEE Transactions on Wireless Communications, 10(7), 2207–2217.CrossRefGoogle Scholar
  64. 64.
    Schroeder, J., Galler, S., Kyamakya, K., & Jobmann, K. (2007). NLOS detection algorithms for ultra-wideband localization. In 2007. WPNC’07. 4th workshop on positioning, navigation and communication (pp. 159–166). IEEE.Google Scholar
  65. 65.
    Wang, X., Wang, Z., & O Dea, B. (2003). A TOA-based location algorithm reducing the errors due to non-line-of-sight (NLOS) propagation. IEEE Transactions on Vehicular Technology, 52(1), 112–116.CrossRefGoogle Scholar
  66. 66.
    Cong, L., & Zhuang, W. (2005). Nonline-of-sight error mitigation in mobile location. IEEE Transactions on Wireless Communications, 4(2), 560–573.CrossRefGoogle Scholar
  67. 67.
    Chen, P. C. (1999). A non-line-of-sight error mitigation algorithm in location estimation. In 1999. WCNC. 1999 IEEE wireless communications and networking conference (pp. 316–320). IEEE.Google Scholar
  68. 68.
    Al-Jazzar, S., & Caffery Jr, J. (2002). ML and Bayesian TOA location estimators for NLOS environments. In 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th vehicular technology conference (Vol. 2, pp. 1178–1181). IEEE.Google Scholar
  69. 69.
    Molisch, A. F., Balakrishnan, K., Chong, C-C, Emami, S, Fort, A, Karedal, J, Kunisch, J, Schantz, H, Schuster, U, & Siwiak, K (2004). IEEE 802.15. 4a channel model-final report, IEEE P802 (Vol. 15, pp 0662). IEEE.Google Scholar
  70. 70.
    Molisch, A. F (2009). Ultra-wide-band propagation channels. In Proceedings of the IEEE, (Vol. 97, pp. 353–371). IEEE.Google Scholar
  71. 71.
    Karedal, J., Wyne, S., Almers, P., Tufvesson, F., Molisch, A.F. (2007). A measurement-based statistical model for industrial ultra-wideband channels. In IEEE transactions on wireless communications, (Vol. 6). IEEE.Google Scholar
  72. 72.
    Kannan, B and others (2004). UWB channel characterization in office environments, Document IEEE 802.15-04-0439-00-004a.Google Scholar
  73. 73.
    Shang, F. (2013). Parameter estimation algorithms for impulse radio UWB localization systems. Dissertations McGill University, 2013Google Scholar
  74. 74.
    Seco, F., Jimenez, A., Prieto, C., Roa, J., & Koutsou, K. (2009). A survey of mathematical methods for indoor localization. 2009. WISP 2009. IEEE international symposium on in intelligent signal processing (pp. 9–14). IEEE.Google Scholar
  75. 75.
    Honkavirta, V., Perl, T., Ali-Lytty, S., & Pich, R. (2009, March). A comparative survey of WLAN location fingerprinting methods. In 2009. WPNC 2009. 6th workshop on positioning, navigation and communication (pp. 243–251). IEEE.Google Scholar
  76. 76.
    Saha, S., Chaudhuri, K., Sanghi, D., & Bhagwat, P. (2003). Location determination of a mobile device using IEEE 802.11 b access point signals. In 2003. WCNC 2003. 2003 IEEE wireless communications and networking (Vol. 3, pp. 1987–1992). IEEE.Google Scholar
  77. 77.
    Shareef, A., Zhu, Y., & Musavi, M. (2008). Localization using neural networks in wireless sensor networks. In Proceedings of the 1st international conference on MOBILe Wireless MiddleWARE, Operating Systems, and Applications (p. 4). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).Google Scholar
  78. 78.
    Battiti, R., Le, N. T., & Villani, A. (2002). Location-aware computing: a neural network model for determining location in wireless LANs.Google Scholar
  79. 79.
    Laoudias, C., Eliades, D. G., Kemppi, P., Panayiotou, C. G., & Polycarpou, M. M. (2009). Indoor localization using neural networks with location fingerprints. In Artificial neural Networks ICANN 2009 (pp. 954–963). Springer Berlin Heidelberg.Google Scholar
  80. 80.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.zbMATHGoogle Scholar
  81. 81.
    Fox, D., Hightower, J., Liao, L., Schulz, D., & Borriello, G. (2003). Bayesian filtering for location estimation. IEEE Pervasive Computing, 3, 24–33.CrossRefGoogle Scholar
  82. 82.
    Casas, R., & Cuartielles, D. (2007). Hidden issues in deploying an indoor location system. IEEE Pervasive Computing, 2, 62–69.CrossRefGoogle Scholar
  83. 83.
    Smith, J. O., & Abel, J. S. (1987). Closed-form least-squares source location estimation from range-difference measurements. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(12), 1661–1669.CrossRefGoogle Scholar
  84. 84.
    Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42(8), 1905–1915.CrossRefGoogle Scholar
  85. 85.
    Time Domain. Accessed 15 Nov 2014
  86. 86.
    Beck, B., Baxley, R., & Kim, J. (2014). Real-time, anchor-free node tracking using ultrawideband range and odometry data. 2014 IEEE international conference on ultra-wideband (ICUWB), pp. 286–291.Google Scholar
  87. 87.
    Dewberry, B., & Petroff, A. (2015). Precision navigation with ad-hoc autosurvey using ultraWideBand two-way ranging network. 12 Workshop on positioning, navigation and communication (WPNC15), pp. 1–4.Google Scholar
  88. 88.
    DecaWave. Accessed 15 Jan 2016
  89. 89.
    DecaWave product information: DW1000. Accessed 15 Jan 2016
  90. 90.
    Fontana, R. J., Richley, E., & Barney, J. (2003). Commercialization of an ultra wideband precision asset location system. In 2003 IEEE conference on ultra wideband systems and technologies (pp. 369–373). IEEE.Google Scholar
  91. 91.
    Zebra Technologies. Accessed 24 Nov 2014
  92. 92.
  93. 93.
  94. 94.
    BeSpoon. Accessed 30 Nov 2014.
  95. 95.
    Steggles, P., & Gschwind, S. (2005). The Ubisense smart space platform (pp. 73–76).Google Scholar
  96. 96.
    Gu, Y., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys and Tutorials, 11(1), 13–32.CrossRefGoogle Scholar
  97. 97.
    Shang, J., Yu, S., & Zhu, L. (2009, January). Location-aware systems for short-range wireless networks. In textit2009. CNMT 2009. International symposium on computer network and multimedia technology (pp. 1–5). IEEE.Google Scholar
  98. 98.
  99. 99.
    Harmer, D., Russell, M., Frazer, E., Bauge, T., Ingram, S., Schmidt, N., & Dizdarevi, V. (2008, September). EUROPCOM: emergency ultrawideband radio for positioning and communications. In 2008. ICUWB 2008. IEEE international conference on ultra-wideband (Vol. 3, pp. 85–88). IEEE.Google Scholar
  100. 100.
    Lo, A., Xia, L., Niemegeers, I., Bauge, T., Russell, M., & Harmer, D. (2008). Europcom-An ultra-wideband (UWB)-based ad hoc network for emergency applications. In 2008. VTC spring 2008. IEEE vehicular technology conference (pp. 6–10). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational University of Computer and Emerging SciencesIslamabadPakistan
  2. 2.Sällberg Technologies e.U.VöcklabruckAustria

Personalised recommendations