Wireless Personal Communications

, Volume 97, Issue 3, pp 4327–4342 | Cite as

Adaptive Transmission Rate Congestion Aware Routing Algorithm in Wireless Mesh Network

  • Fawaz A. KhasawnehEmail author
  • Michel Kadoch


Due to the fast growth in wireless mesh networking technology, traffic congestion is one of the challenges that have to be dealt with in order to maintain the quality of service provided for mesh clients. Congestion control approaches in the literature can be categorized into proactive and reactive approaches. In this paper, a novel proactive approach is proposed. Where a Variable Order Markov (VOM) prediction model is proposed to predict the congestion status in each link in the network, new route is established for the traffic based on the output of the VOM model, and the transmission rate is adjusted based on the link congestion status to maximize the overall user satisfaction. Optimization model is introduced and solved using Lagrange method. Based on the predicted link congestion, rerouting algorithm is implemented in order to assure the load balancing and to mitigate congestion over WMN network. Simulation results show that our proposed algorithm outperforms other algorithm in the literature in terms of throughput, end-to-end delay, and packet loss.


Wireless mesh network QoS Congestion mitigation Congestion prediction 


  1. 1.
    Begleiter, R., El-Yaniv, R., & Yona, G. (2004). On prediction using variable order Markov models. Journal of Artificial Intelligence Research, 22, 385–421.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Islam, M., Rahman, M. L., & Mamun-Or-Rashid, M. (2014). Load adaptive congestion control and rate readjustment for wireless mesh networks. In 2014 IEEE 5th international conference on software engineering and service science (pp. 1088–1092), Beijing. doi: 10.1109/ICSESS.2014.6933755.
  3. 3.
    Keerthana, P., & ChandraMohan, S. (2015). Adaptive approach based joint scheduling and congestion control in wireless networks. In 2015 international conference on innovations in information, embedded-and-communication-systems (ICIIECS) (pp. 1–5), Coimbatore. doi: 10.1109/ICIIECS.2015.7193254.
  4. 4.
    Kapadia, K. N., & Ambawade, D. D. (2015). Congestion aware load balancing for multiradio wireless mesh network. In 2015 international conference on communication, information & computing technology (ICCICT) (pp. 1–6), Mumbai. doi: 10.1109/ICCICT.2015.7045750.
  5. 5.
    Langdon, G. (1983). A note on the Ziv-Lempel model for compressing individual sequences (Corresp.). IEEE Transactions on Information Theory, 29(2), 284–287. doi: 10.1109/TIT.1983.1056645.CrossRefzbMATHGoogle Scholar
  6. 6.
    Rissanen, J. (1983). A universal data compression system. IEEE Transactions on Information Theory, 29(5), 656–664. doi: 10.1109/TIT.1983.1056741.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cleary, J., & Witten, I. (1984). Data compression using adaptive coding and partial string matching. IEEE Transactions on Communications, 32(4), 396–402. doi: 10.1109/TCOM.1984.1096090.CrossRefGoogle Scholar
  8. 8.
    Willems, F. M. J., Shtarkov, Y. M., & Tjalkens, T. J. (1995). The context-tree weighting method: Basic properties. IEEE Transactions on Information Theory, 41(3), 653–664. doi: 10.1109/18.382012.CrossRefzbMATHGoogle Scholar
  9. 9.
    Volf, P. (2002). Weighting techniques in data compression theory and algorithms. Ph.D. thesis, Technische Universiteit Eindhoven.Google Scholar
  10. 10.
    Tjalkens, T., & Willems, F. (1997). Implementing the context-tree weighting method: Arithmetic coding. In International conference on combinatorics, information theory and statistics (p. 83).Google Scholar
  11. 11.
    Ron, D., Singer, Y., & Tishby, N. (1996). The power of amnesia: Learning probabilistic automata with variable memory length. Machine Learning, 25(2–3), 117–149.CrossRefGoogle Scholar
  12. 12.
    Nisenson, M., Yariv, I., El-Yaniv, R., & Meir, R. (2003). Towards behaviometric security systems: Learning to identify a typist. In The 7th European conference on principles and practice of knowledge discovery in databases. Google Scholar
  13. 13.
    Masri, A. E., Sardouk, A., Khoukhi, L., & Gaiti, D. (2012). An efficient and fair congestion control protocol for IEEE 802.11-based Wireless Mesh Networks. In IEEE 23rd international symposium on personal, indoor and mobile radio communications (PIMRC) (pp. 738–744), Sydney, NSW. doi: 10.1109/PIMRC.2012.6362882.
  14. 14.
    El Masri, A., Sardouk, A., Khoukhi, L., Hafid, A., & Gaiti, D. (2014). Neighborhood-aware and overhead-free congestion control for IEEE 802.11 wireless mesh networks. IEEE Transactions on Wireless Communications, 13(10), 5878–5892. doi: 10.1109/TWC.2014.2349898.CrossRefGoogle Scholar
  15. 15.
    Rangwala, S., Jindal, A., Jang, K. Y., Psounis, K., & Govindan, R. (2011). Neighborhood-centric congestion control for multihop wireless mesh networks. IEEE/ACM Transactions on Networking, 19(6), 1797–1810. doi: 10.1109/TNET.2011.2146272.CrossRefGoogle Scholar
  16. 16.
    Qiu, F., & Xue, Y. (2014). Robust joint congestion control and scheduling for time-varying multi-hop wireless networks with feedback delay. IEEE Transactions on Wireless-Communications, 13(9), 5211–5222. doi: 10.1109/TWC.2014.2339277.CrossRefGoogle Scholar
  17. 17.
    Rethfeldt, M., Danielis, P., Beichler, B., Konieczek, B., Uster F., & Timmermann, D. (2016). Evaluating cross-layer cooperation of congestion and flow control in IEEE 802.11s networks. In 2016 IEEE 30th international conference on advanced information networking and applications (AINA) (pp. 181–188), Crans-Montana. doi:  10.1109/AINA.2016.12.
  18. 18.
    Sheikh, S., Wolhuter, R., & Engelbrecht, H. A. (2015). An adaptive congestion control and fairness scheduling strategy for wireless mesh networks. In IEEE symposium series on computational intelligence (pp. 1174–1181). Cape Town. doi: 10.1109/SSCI.2015.169.
  19. 19.
    Yang, K., Ma, J. F., & Miao, Z. H. (2009). Hybrid routing protocol for wireless mesh network. In 2009 international conference on computational intelligence and security (pp. 547–551), Beijing. doi:  10.1109/CIS.2009.48.
  20. 20.
    Bari, S. M. S., Anwar, F., & Masud, M. H. (2012) Performance study of hybrid wireless mesh protocol (HWMP) for IEEE 802.11s WLAN mesh networks. In 2012 international conference on computer and communication engineering (ICCCE) (pp. 712–716), Kuala Lumpur. doi: 10.1109/ICCCE.2012.6271309.
  21. 21.
    Khasawneh, F. A, Benmimoune, A., Kadoch, M., & Khasawneh, M. A. (2015). Predictive congestion avoidance in wireless mesh network. In 2015 3rd international conference on future internet of things and cloud (FiCloud) (pp. 108–112), Rome. IEEE.Google Scholar
  22. 22.
    Khasawneh, F. A., Benmimoune, A., & Kadoch, M. (2016). Joint routing and admission control in wireless mesh network. International Journal of Communications, Network and System Sciences, 9, 311–325. doi: 10.4236/ijcns.2016.98028.CrossRefGoogle Scholar
  23. 23.
    Lin, H., Ma, J., Hu, J., & Yang, K. (2012). PA-SHWMP: A privacy aware secure hybrid wireless mesh protocol for IEEE 802.11s wireless mesh networks. EURASIP Journal on Wireless Communications and Networking, 2012, 69.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of Quebec – ETSMontrealCanada

Personalised recommendations