Wireless Personal Communications

, Volume 97, Issue 3, pp 3569–3585 | Cite as

Machine-to-Machine Communication and Research Challenges: A Survey

  • Ming Zhao
  • Arun Kumar
  • Tapani Ristaniemi
  • Peter Han Joo ChongEmail author


In recent years, with the proliferation of machine-to-machine (M2M) applications into industries, M2M communications has attracted researchers in this prominent field of research. M2M communications has emerged to achieve ubiquitous communication among intelligent devices to monitor applications with little or no human intervention. The autonomous characteristics of M2M communications, which decrease the cost for human resource significantly, give impetus for the research of M2M communications in both industry and academic areas. This paper focuses on state-of-the-art M2M technologies, future challenges and envisioned opportunities. We have divided M2M communications into two categories, namely, capillary M2M and cellular M2M. In this paper, we provide a comprehensive study of M2M communications, including different categories and their challenges. This paper also investigates into the standards defined by the standardization organizations, such as IEEE, IETF, 3GPP for the multiplicity of M2M communications. At last, we analyze and discuss the key research challenges in M2M application designs.


Machine-to-machine communications Capillary M2M Cellular M2M Wireless technology Architecture Gateway 


  1. 1.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.CrossRefGoogle Scholar
  2. 2.
    Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.CrossRefGoogle Scholar
  3. 3.
    Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The internet of things—A survey of topics and trends. Information Systems Frontiers, 17(2), 261–274.CrossRefGoogle Scholar
  4. 4.
    Carvallo, A., & Cooper, J. (2015). The advanced smart grid: Edge power driving sustainability. Norwood, MA: Artech House.Google Scholar
  5. 5.
    Suciu, G., Suciu, V., Martian, A., Craciunescu, R., Vulpe, A., Marcu, I., et al. (2015). Big data, internet of things and cloud convergence—An architecture for secure e-health applications. Journal of Medical Systems, 39(11), 1–8.CrossRefGoogle Scholar
  6. 6.
    Djahel, S., Doolan, R., Muntean, G.-M., & Murphy, J. (2015). A communications-oriented perspective on traffic management systems for smart cities: challenges and innovative approaches. IEEE Communications Surveys & Tutorials, 17(1), 125–151.CrossRefGoogle Scholar
  7. 7.
    Andreev, S., Galinina, O., Pyattaev, A., Gerasimenko, M., Tirronen, T., Torsner, J., et al. (2015). Understanding the IoT connectivity landscape: A contemporary M2M radio technology roadmap. IEEE Communications Magazine, 53(9), 32–40.CrossRefGoogle Scholar
  8. 8.
    Lee, E. K., Choi, H. R., Kim, J. J., & Kim, C. S. (2015). A study on the performance evaluation of container tracking device based on M2M. In IEEE 17th international conference on advanced communication technology (ICACT) (pp. 500–504).Google Scholar
  9. 9.
    Alexiou, A. (2014). Wireless World 2020: Radio interface challenges and technology enablers. IEEE Vehicular Technology Magazine, 9(1), 46–53.CrossRefGoogle Scholar
  10. 10.
    Boswarthick, D., Elloumi, O., & Hersent, O. (2012). M2M communications: A systems approach. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  11. 11.
    Nhat-Hai, N., Quoc-Tuan, T., Leger, J. M., & Tan-Phu, V. (2010). A real-time control using wireless sensor network for intelligent energy management system in buildings. IEEE workshop on environmental energy and structural monitoring systems (EESMS) (pp. 87–92). September 9, 2010.Google Scholar
  12. 12.
    Accettura, N., Palattella, M. R., Dohler, M., Grieco, L. A., & Boggia, G. (2012). Standardized power-efficient & internet-enabled communication stack for capillary M2M networks. In proceedings of the IEEE wireless communications and networking conference workshops (WCNCW’12) (pp. 226–231).Google Scholar
  13. 13.
    Taleb, T., & Kunz, A. (2012). Machine type communications in 3GPP networks: potential, challenges, and solutions. IEEE Communications Magazine, 50(3), 178–184.CrossRefGoogle Scholar
  14. 14.
    Lien, S.-Y., & Chen, K.-C. (2011). Massive access management for QoS guarantees in 3GPP machine-to-machine communications. IEEE Communications Letters, 15(3), 311–313.CrossRefGoogle Scholar
  15. 15.
    Lai, C., Lu, R., Zheng, D., & Li, H. (2015). Toward secure large-scale machine-to-machine comm unications in 3GPP networks: Chall enges and solutions. IEEE Communications Magazine, 53(12), 12–19.CrossRefGoogle Scholar
  16. 16.
    Kim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: Survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.CrossRefGoogle Scholar
  17. 17.
    Aijaz, A., & Aghvami, A. H. (2015). Cognitive machine-to-machine communications for internet-of-things: A protocol stack perspective. IEEE Internet of Things Journal, 2(2), 103–112.CrossRefGoogle Scholar
  18. 18.
    Chen, K.-C., & Lien, S.-Y. (2014). Machine-to-machine communications: Technologies and challenges. Ad Hoc Networks, 18, 3–23.CrossRefGoogle Scholar
  19. 19.
    Sheng, Z., Yang, S., Yu, Y., Vasilakos, A. V., McCann, J. A., & Leung, K. K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.CrossRefGoogle Scholar
  20. 20.
    Zheng, K., Hu, F., Wang, W., Xiang, W., & Dohler, M. (2012). Radio resource allocation in LTE-advanced cellular networks with M2M communications. IEEE Communications Magazine, 50(7), 184–192.CrossRefGoogle Scholar
  21. 21.
    Ho, C. Y., & Huang, C.-Y. (2012). Energy-saving massive access control and resource allocation schemes for M2M communications in OFDMA cellular networks. IEEE Wireless Communications Letters, 1(3), 209–212.CrossRefGoogle Scholar
  22. 22.
    Ratasuk, R., Prasad, A., Li, Z., Ghosh, A., & Uusitalo, M. (2015) Recent advancements in M2M communications in 4G networks and evolution towards 5G. In 2015 IEEE 18th international conference on intelligence in next generation networks (ICIN) (pp. 52–57).Google Scholar
  23. 23.
    Zhang, Y., Yu, R., Xie, S., Yao, W., Xiao, Y., & Guizani, M. (2011). Home M2M networks: Architectures, standards, and QoS improvement. IEEE Communications Magazine, 49(4), 44–52.CrossRefGoogle Scholar
  24. 24.
    Ghavimi, F., & Chen, H.-H. (2015). M2M communications in 3GPP LTE/LTE-A networks: Architectures, service requirements, challenges, and applications. IEEE Communications Surveys & Tutorials, 17(2), 525–549.CrossRefGoogle Scholar
  25. 25.
    Prabhakaran, S., & Bhaskaran, N. (2015). UWB antennas with band notch characteristics—A study. Journal of Network Communications and Emerging Technologies (JNCET), 4(2)
  26. 26.
    Gebali, F. (2015). Modeling IEEE 802.11 (WiFi) Protocol. In Analysis of computer networks. Cham: Springer.Google Scholar
  27. 27.
    Qiao, B., & Ma, K. (2015) An enhancement of the ZigBee wireless sensor network using bluetooth for industrial field measurement. 2015 IEEE MTT-S international microwave workshop series on advanced materials and processes for RF and THz applications (IMWS-AMP) (pp. 1–3).Google Scholar
  28. 28.
    Mahajan, N., & Kaur, J. (2015). A review of 2.4 GHz transmitters for IEEE 802.15. 4 Low Rate WPANs. In 2015 second international conference on advances in computing and communication engineering (ICACCE) (pp. 28–33).Google Scholar
  29. 29.
    Machado, R. G., & Wyglinski, A. M. (2015). Software-defined radio: Bridging the analog–digital divide. Proceedings of the IEEE, 103(3), 409–423.CrossRefGoogle Scholar
  30. 30.
    Niyato, D., Xiao, L., & Wang, P. (2011). Machine-to-machine communications for home energy management system in smart grid. IEEE Communications Magazine, 49(4), 53–59.CrossRefGoogle Scholar
  31. 31.
    Khorov, E., Lyakhov, A., Krotov, A., & Guschin, A. (2015). A survey on IEEE 802.11 ah: An enabling networking technology for smart cities. Computer Communications, 58, 53–69.CrossRefGoogle Scholar
  32. 32.
    Aust, S., Prasad, R. V., & Niemegeers, I. G. (2012). IEEE 802.11 ah: Advantages in standards and further challenges for sub 1 GHz Wi-Fi. In 2012 IEEE international conference on communications (ICC) (pp. 6885–6889).Google Scholar
  33. 33.
    Sun, W., Choi, M., & Choi, S. (2013). IEEE 802.11 ah: A long range 802.11 WLAN at Sub 1 GHz. Journal of ICT Standardization, 1(1), 83–108.CrossRefGoogle Scholar
  34. 34.
    Togashi, M. (2016). Visible light transmitter, visible light receiver, visible light communication system, and visible light communication method. US Patent 9,232,202.
  35. 35.
    Torabi, N., Rostamzadeh, K., & Leung, V. (2015). Ieee 802.15. 4 beaconing strategy and the coexistence problem in ism band. IEEE Transactions on Smart Grid, 6(3), 1463–1472.CrossRefGoogle Scholar
  36. 36.
    Mišić, V. B., Mišić, J., Lin, X., & Nerandzic, D. (2012). Capillary machine-to-machine communications: The road ahead. In Ad hoc, mobile, and wireless networks (pp. 413–423): Springer.Google Scholar
  37. 37.
    IEEE Std 802.15.4-2006. IEEE standard for information technology—local and metropolitan area networks—specific requirements—part 15.4: Wireless medium access control (mac) and physical layer (phy) specifications for low rate wireless personal area networks (wpans). (Revision of IEEE Std 802.15.4-2003) (pp. 1–320).Google Scholar
  38. 38.
    Ko, J. G., Terzis, A., Dawson-Haggerty, S., Culler, D. E., Hui, J. W., & Levis, P. (2011). Connecting low-power and lossy networks to the internet. IEEE Communications Magazine, 49(4), 96–101.CrossRefGoogle Scholar
  39. 39.
    Gaddour, O., & Koubâa, A. (2012). RPL in a nutshell: A survey. Computer Networks, 56(14), 3163–3178.CrossRefGoogle Scholar
  40. 40.
    Ko, J., Terzis, A., Dawson-Haggerty, S., Culler, D. E., Hui, J. W., & Levis, P. (2011). Connecting low-power and lossy networks to the internet. IEEE Communications Magazine, 49(4), 96–101.CrossRefGoogle Scholar
  41. 41.
    Bormann, C., Castellani, A. P., & Shelby, Z. (2012). Coap: An application protocol for billions of tiny internet nodes. IEEE Internet Computing, 16(2), 62.CrossRefGoogle Scholar
  42. 42.
    Gritzalis, S., & Spinellis, D. (1997). Addressing threats and security issues in world wide web technology. In S. Katsikas (Ed.), Communications and multimedia security. IFIP advances in information and communication technology. Boston, MA: Springer.Google Scholar
  43. 43.
    Shelby, Z. (2012). Constrained RESTful environments (CoRE) link format. RFC6690, IETF standards, CoRE working group.Google Scholar
  44. 44.
    Banerjee, A., Nguyen, B., Gopalakrishnan, V., Kasera, S., Lee, S., & Van der Merwe, J. (2015). Efficient, adaptive and scalable device activation for M2M communications. In 2015 12th annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 399–407).Google Scholar
  45. 45.
    Bhat, P., & Dohler, M. (2015). Overview of 3GPP machine-type communication standardization. In C. Anton-Haro & M. Dohler (Eds.), Machine-to-machine (M2M) Communications. Architecture, Performance and Applications (pp. 47–62).Google Scholar
  46. 46.
    Shariatmadari, H., Ratasuk, R., Iraji, S., Laya, A., Taleb, T., Jäntti, R., et al. (2015). Machine-type communications: Current status and future perspectives toward 5G systems. IEEE Communications Magazine, 53(9), 10–17.CrossRefGoogle Scholar
  47. 47.
    Vassaki, S., Pitsiladis, G., Sagkriotis, S. E., & Panagopoulos, A. D. (2015). Future M2M Communication networks: Spectrum sharing, random. Handbook of research on next generation mobile communication systems (p. 149). Hershey, PA: IGI Global.Google Scholar
  48. 48.
    Lien, S.-Y., Liau, T.-H., Kao, C.-Y., & Chen, K.-C. (2012). Cooperative access class barring for machine-to-machine communications. IEEE Transactions on Wireless Communications, 11(1), 27–32.CrossRefGoogle Scholar
  49. 49.
    Zhang, N., Cheng, N., Gamage, A. T., Zhang, K., Mark, J. W., & Shen, X. (2015). Cloud assisted HetNets toward 5G wireless networks. IEEE Communications Magazine, 53(6), 59–65.CrossRefGoogle Scholar
  50. 50.
    Singh, S., & Huang, K.-L. A robust M2M gateway for effective integration of capillary and 3GPP networks. (2011). In IEEE 5th international conference on advanced networks and telecommunication systems (ANTS) (pp. 1–3).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ming Zhao
    • 3
  • Arun Kumar
    • 4
  • Tapani Ristaniemi
    • 2
  • Peter Han Joo Chong
    • 1
    Email author
  1. 1.Department of Electrical and Electronic EngineeringAuckland University of TechnologyAucklandNew Zealand
  2. 2.Department of Mathematical of Information TechnologyUniversity of JyväskyläJyvaskylaFinland
  3. 3.Institute for Infocomm Research of Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
  4. 4.Department of Electrical & Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations