Wireless Personal Communications

, Volume 97, Issue 3, pp 3331–3353 | Cite as

A Cross-Layer and Optimized Privacy Method in Vehicular Ad-Hoc Networks

  • Gongjun YanEmail author
  • Danda B. Rawat
  • William Lindsey


Vehicular networks has been recently proposed to connect vehicles and form ad-hoc networks. Many safety and information-entertainment related applications have thus been proposed. These applications, however, potentially have unique privacy challenges. For example, the vehicle’s network identity is strictly linked to the owner’s identity due to the insurance liability. In this paper, we propose cross-layer privacy protection protocols including initialization, joining and exiting protocols. In addition, we also analytically discuss the optimization of the quantity of pseudonyms to save costs. The analytical and numerical results showed the effectiveness of the proposed methods.


Privacy Vehicular networks Cost optimization Ad hoc network Privacy protocols 


  1. 1.
    Arif, S., Olariu, S., Wang, J., Yan, G., Yang, W., & Khalil, I. (2012). Datacenter at the airport: Reasoning about time-dependent parking lot occupancy. IEEE Transactions on Parallel and Distributed Systems, 99, 2067–2080.CrossRefGoogle Scholar
  2. 2.
    Yan, G., Rawat, D. B., Bista, B. B., & Alnusair, A. (2013). Mining vehicular data in vanet. In Proceedings of the TENCON 2013, Xian, Shaanxi.Google Scholar
  3. 3.
    Wen, D., Yan, G., Zheng, N., Shen, L., & Li, L. (2011). Towards cognitive vehicles. IEEE Intelligent Systems Magazine, 26(3), 76–80.CrossRefGoogle Scholar
  4. 4.
    Yan, G., Yang, W., Rawat, D. B., & Olariu, S. (2011). Smartparking: A secure and intelligent parking system. IEEE Intelligent Transportation Systems Magazine, 3(1), 18–30.CrossRefGoogle Scholar
  5. 5.
    Choi, J. Y., Golle, P., & Jakobsson, M. (2006). Tamper-evident digital signatures: Protecting certification authorities against malware. In Proceedings of the IEEE international symposium on dependable, autonomic and secure computing (DASC) (pp. 37–44).Google Scholar
  6. 6.
    Raya, M., Papadimitratos, P., & Hubaux, J.-P. (2006). Securing vehicular communications. IEEE Wireless Communications Magazine, 13, 8–15.CrossRefGoogle Scholar
  7. 7.
    Sun, J., Zhang, C., Zhang, Y., & Fang, Y. M. (2010). An identity-based security system for user privacy in vehicular ad hoc networks. IEEE Transactions on Parallel Distributed System, 21, 1227–1239.CrossRefGoogle Scholar
  8. 8.
    Yan, G., Olariu, S., & Weigle, M. C. (2008). Providing VANET security through active position detection. Computer Communications, 31(12), 2883–2897.CrossRefGoogle Scholar
  9. 9.
    Yan, G., Olariu, S., & Weigle, M. (2009). Providing location security in vehicular ad hoc networks. IEEE Wireless Communications, 16(6), 48–55.CrossRefGoogle Scholar
  10. 10.
    Xie, H., Kulik, L., & Tanin, E. (2010). Privacy-aware traffic monitoring. IEEE Transactions on Intelligent Transportation Systems, 11(1), 61–70.CrossRefGoogle Scholar
  11. 11.
    Yan, G., & Olariu, S. (2011). A probabilistic analysis of link duration in vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1227–1236.CrossRefGoogle Scholar
  12. 12.
    Yan, G., Wen, D., Olariu, S., & Weigle, M. C. (2013). Security challenges in vehicular cloud computing. IEEE Transactions on Intelligent Transportation Systems, 14, 284–294. (Impact Factor: 3.452).CrossRefGoogle Scholar
  13. 13.
    Rawat, D. B., Popescu, D., Gongjun, Y., & Olariu, S. (2011). Enhancing vanet performance by joint adaptation of transmission power and contention window size. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1528–1535.CrossRefGoogle Scholar
  14. 14.
    Yan, G., Olariu, S., & Popescu, D. (2012). NOTICE: An architecture for the notification of traffic incidents. In IEEE intelligent transportation systems magazine.Google Scholar
  15. 15.
    Le, Z., Ouyang, Y., Chen, G., & Makedon, F. (2011). Dynamic mix zone: Location data sanitizing in assisted environments. Universal Access in the Information Society, 10(2), 195–205.CrossRefGoogle Scholar
  16. 16.
    Dahl, M., Delaune, S., & Steel, G. (2010). Formal analysis of privacy for vehicular mix-zones. In Proceedings of the 15th European conference on research in computer security ser. ESORICS’10 (pp. 55–70).Google Scholar
  17. 17.
    Palanisamy, B., & Liu, L. (2011). Mobimix: Protecting location privacy with mix-zones over road networks. In Proceedings of the 27th international conference on data engineering (ICDE 2011), Hannover (pp. 494–505).Google Scholar
  18. 18.
    Sun, Y., Su, X., Zhao, B., & Su, J. (2010). Mix-zones deployment for location privacy preservation in vehicular communications. In CIT 2010, West Yorkshire (pp. 2825–2830).Google Scholar
  19. 19.
    Ribagorda-Garnacho, A. (2010). Authentication and privacy in vehicular networks. Journal of UPGRADE, XI(1), 72–79.Google Scholar
  20. 20.
    Sampigethaya, K., Li, M., Huang, L., & Poovendran, R. (2007). Amoeba: Robust location privacy scheme for vanet. IEEE Journal on Selected Areas in Communications, 25(8), 1569–1589.CrossRefGoogle Scholar
  21. 21.
    Horster, P., Petersen, H., & Michels, M. (1994). Meta-elgamal signature schemes. In Proceedings of the 2nd ACM conference on computer and communications security, ser. CCS ’94. New York, NY: ACM (pp. 96–107). [Online]. doi: 10.1145/191177.191197
  22. 22.
    Dok, H., Fu, H., Echevarria, R., & Weerasinghe, H. (2010). Privacy issues of vehicular ad-hoc networks. International Journal of Future Generation Communication and Networking, 3(1), 17–32.Google Scholar
  23. 23.
    Sampigethaya, K., Huang, L., Li, M., Poovendran, R., Matsuura, K. & Sezaki, K. (2005). Caravan: Providing location privacy for vanet. In Embedded security in cars (ESCAR.Google Scholar
  24. 24.
    Blanchet, B., Abadi, M., & Fournet, C. (2008). Automated verification of selected equivalences for security protocols. Journal of Logic and Algebraic Programming, 75(1), 3–51.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Arapinis, M., Chothia, T., Ritter, E., & Ryan, M. (2010). Analysing unlinkability and anonymity using the applied pi calculus. In CSF (pp. 107–121).Google Scholar
  26. 26.
    Brusò, M., Chatzikokolakis, K., & den Hartog, J. (2010). Formal verification of privacy for RFID systems. In CSF (pp. 75–88).Google Scholar
  27. 27.
    Delaune, S., Kremer, S., & Ryan, M. (2010). Verifying privacy-type properties of electronic voting protocols: A taster. In Towards trustworthy elections (pp. 289–309).Google Scholar
  28. 28.
    Lu, R., Lin, X., Zhu, H., Ho, P.-H., & Shen, X. (2008). Ecpp: Efficient conditional privacy preservation protocol for secure vehicular communications. In INFOCOM 2008. 27th IEEE international conference on computer communications, joint conference of the IEEE computer and communications societies, 13–18 April 2008, Phoenix, AZ (pp. 1229–1237).Google Scholar
  29. 29.
    Lu, R., Lin, X., Luan, T., Liang, X., Li, X., Chen, L., & Shen, X. (2012). Prefilter: An efficient privacy-preserving relay filtering scheme for delay tolerant networks. In INFOCOM 2012.Google Scholar
  30. 30.
    Lu, R., Lin, X., Liang, X., & Shen, X. S. (2012). A dynamic privacy-preserving key management scheme for location-based services in vanets. IEEE Transactions on Intelligent Transportation Systems, 13(1), 127–139.CrossRefGoogle Scholar
  31. 31.
    Lin, X., Lu, R., Liang, X., & Shen, X. (2011). Stap: A social-tier-assisted packet forwarding protocol for achieving receiver-location privacy preservation in vanets. INFOCOM, 2011, 2147–2155.Google Scholar
  32. 32.
    Lu, R., Lin, X., & Shen, X. (2010). Spring: A social-based privacy-preserving packet forwarding protocol for vehicular delay tolerant networks. INFOCOM, 2010, 632–640.Google Scholar
  33. 33.
    Lei, M., Hong, X., & Vrbsky, S. V. (2007) Protecting location privacy with dynamic mac address exchanging in wireless networks. In Proceedings of the global communications conference, 2007. GLOBECOM ’07, Washington, DC (pp. 49–53).Google Scholar
  34. 34.
    Chim, T. W., Yiu, S. M., Hui, L. C., & Li, V. O. (2011). Specs: Secure and privacy enhancing communications schemes for VANETs. Ad Hoc Networks, 9(2), 189–203.CrossRefGoogle Scholar
  35. 35.
    Xue, X., & Ding, J. (2012). Lpa: A new location-based privacy-preserving authentication protocol in vanet. Security and Communication Networks, 5(1), 69–78.CrossRefGoogle Scholar
  36. 36.
    Nikaein, N., Kanti Datta, S., Marecar, I., & Bonnet, C. (2013). Application distribution model and related security attacks in VANET (pp. 1–6).Google Scholar
  37. 37.
    Yan, G., Olariu, S., & Weigle, M. C. (2009). Providing location security in vehicular ad-hoc networks. IEEE Wireless Communications, 16(6), 48–55.CrossRefGoogle Scholar
  38. 38.
    Yan, G., Rawat, D. B., & Bista, B. B. (2012). Towards secure vehicular clouds. In Proceedings of the sixth international conference on complex, intelligent, and software intensive systems (CISIS-2012), Sanpaolo Palace Hotel, Palermo.Google Scholar
  39. 39.
    Olariu, S., Hristov, T., & Yan, G. (2012). The next paradigm shift: From vehicular networks to vehicular clouds. In S. Basagni, S. G. Marco Conti, & I. Stojmenovic (Eds.), Mobile Ad hoc networking: The cutting edge directions. Hoboken: Wiley.Google Scholar
  40. 40.
    Yan, G., Rawat, D. B., Shi, H., & Chong, D. (2017). A cross-layer and optimized privacy method in Vehicular ad-hoc Networks. In 2nd International Conference on IEEE Image, Vision and Computing (ICIVC), 2017 (pp. 894–898).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Management and Information SciencesUniversity of Southern IndianaEvansvilleUSA
  2. 2.Howard UniversityWashingtonUSA
  3. 3.Indiana University KokomoKokomoUSA

Personalised recommendations