Secrecy and throughput performance of an energy harvesting hybrid cognitive radio network with spectrum sensing
- 40 Downloads
Abstract
In this paper, we evaluate the secrecy outage performance and throughput of a hybrid cognitive radio network, where a secondary user (SU) accesses the primary spectrum either in underlay or overlay mode based on spectrum sensing decision. In underlay, the transmit power of the SU as well as the relay is limited by the maximum acceptable interference at primary user (PU) receiver as required by an PU outage constraint, a quality of service for PU. The secondary network employs a decode and forward relay which harvests energy from the radio frequency signal of SU following a time switching relaying protocol. We develop analytical expressions for secrecy outage considering the impact of sensing decision and sensing time. Impact of sensing time, imperfect channel state information of interfering link, energy harvesting time, acceptable interference threshold and PU outage constraint on the secrecy outage probability, as well as throughput of SU are investigated. Further, an interplay between throughput performance and secrecy outage of the network is highlighted.
Keywords
Cognitive radio network (CRN) Spectrum sensing Throughput Imperfect channel state information (CSI) Energy harvesting (EH) Secrecy outage probability (SOP)Notes
References
- 1.Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio, PhD dissertation, Royal Institute of Technology (KTH), Stockholm, SwedenGoogle Scholar
- 2.Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220. https://doi.org/10.1109/JSAC.2004.839380.CrossRefGoogle Scholar
- 3.Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. IEEE Proceedings, 97(5), 894–914.CrossRefGoogle Scholar
- 4.Song, H., Hong, J. P., & Choi, W. (2013). On the optimal switching probability for a hybrid cognitive radio system. IEEE Transactions on Wireless Communications, 12(4), 1594–1605.CrossRefGoogle Scholar
- 5.Senthuran, S., Anpalagan, A., & Das, O. (2012). Throughput analysis of opportunistic access strategies in hybrid underlay-overlay cognitive radio networks. IEEE Transactions on Wireless Communications, 11(6), 2024–2035.CrossRefGoogle Scholar
- 6.Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefGoogle Scholar
- 7.Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of IEEE, 55(4), 523–531.CrossRefGoogle Scholar
- 8.Liang, Y. C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing—Throughput tradeoff for cognitive radio network. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRefGoogle Scholar
- 9.Zhang, Q., Jia, J., & Zhang, J. (2009). Cooperative relay to improve diversity in cognitive radio networks. IEEE Communications Magazine, 47(2), 111–117.MathSciNetCrossRefGoogle Scholar
- 10.Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636. https://doi.org/10.1109/TWC.2013.062413.122042.CrossRefGoogle Scholar
- 11.Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRefGoogle Scholar
- 12.Zhao, N., Zhang, S., Yu, F. R., Chen, Y., Nallanathan, A., & Leung, V. C. M. (2017). Exploiting interference for energy harvesting: A survey. IEEE Access Research Issues, and Challenges, 5, 10403–10421.CrossRefGoogle Scholar
- 13.Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.CrossRefGoogle Scholar
- 14.Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Wireless energy harvesting in interference alignment networks. IEEE Communications Magazine, 53(6), 72–78.CrossRefGoogle Scholar
- 15.Zhou, L., & Chao, H. C. (2011). Multimedia traffic security architecture for the internet of things. IEEE Network, 25(3), 35–40.CrossRefGoogle Scholar
- 16.Delfs, H., & Knebl, H. (2007). Introduction to cryptography: Principles and applications (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
- 17.Hong, Y. W. P., Lan, P. C., & Kuo, C. C. J. (2013). Enhancing physical-layer secrecy in multiantenna wireless systems: An overview of signal processing approaches. IEEE Signal Processing Magazine, 30(5), 29–40. https://doi.org/10.1109/MSP.2013.2256953.CrossRefGoogle Scholar
- 18.Wyner, A. D. (1975). The wire-tap channel. The Bell System Technical Journal, 54(8), 1355–1387. https://doi.org/10.1002/j.1538-7305.1975.tb02040.x.MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefGoogle Scholar
- 20.Maji, P., Prasad, B., Roy, S. D., & Kundu, S. (2018). Secrecy outage of a cognitive radio network with selection of energy harvesting relay and imperfect CSI. Wireless Personal Communications, 100(2), 571–586.CrossRefGoogle Scholar
- 21.Prasad, B., Roy, S. D., & Kundu, S. (2014). Outage performance of cognitive relay network with imperfect channel estimation under proactive DF relaying. In Twentieth National Conference on Communications (NCC), Kanpur (pp. 1–6).Google Scholar
- 22.Maji, P., Dhar Roy, S., & Kundu, S. (2018). Physical layer security in cognitive radio network with energy harvesting relay and jamming in the presence of direct link. IET Communications, 12(11), 1389–1395.CrossRefGoogle Scholar
- 23.Suraweera, H. A., Smith, P. J., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59(4), 1811–1822.CrossRefGoogle Scholar
- 24.Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.CrossRefGoogle Scholar
- 25.Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (7th ed.). New York: Academic Press.zbMATHGoogle Scholar