Secrecy and throughput performance of an energy harvesting hybrid cognitive radio network with spectrum sensing

  • Pranabesh MajiEmail author
  • Kuldeep Yadav
  • Sanjay Dhar Roy
  • Sumit Kundu


In this paper, we evaluate the secrecy outage performance and throughput of a hybrid cognitive radio network, where a secondary user (SU) accesses the primary spectrum either in underlay or overlay mode based on spectrum sensing decision. In underlay, the transmit power of the SU as well as the relay is limited by the maximum acceptable interference at primary user (PU) receiver as required by an PU outage constraint, a quality of service for PU. The secondary network employs a decode and forward relay which harvests energy from the radio frequency signal of SU following a time switching relaying protocol. We develop analytical expressions for secrecy outage considering the impact of sensing decision and sensing time. Impact of sensing time, imperfect channel state information of interfering link, energy harvesting time, acceptable interference threshold and PU outage constraint on the secrecy outage probability, as well as throughput of SU are investigated. Further, an interplay between throughput performance and secrecy outage of the network is highlighted.


Cognitive radio network (CRN) Spectrum sensing Throughput Imperfect channel state information (CSI) Energy harvesting (EH) Secrecy outage probability (SOP) 



  1. 1.
    Mitola, J. (2000). Cognitive radio: An integrated agent architecture for software defined radio, PhD dissertation, Royal Institute of Technology (KTH), Stockholm, SwedenGoogle Scholar
  2. 2.
    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220. Scholar
  3. 3.
    Goldsmith, A., Jafar, S. A., Maric, I., & Srinivasa, S. (2009). Breaking spectrum gridlock with cognitive radios: An information theoretic perspective. IEEE Proceedings, 97(5), 894–914.CrossRefGoogle Scholar
  4. 4.
    Song, H., Hong, J. P., & Choi, W. (2013). On the optimal switching probability for a hybrid cognitive radio system. IEEE Transactions on Wireless Communications, 12(4), 1594–1605.CrossRefGoogle Scholar
  5. 5.
    Senthuran, S., Anpalagan, A., & Das, O. (2012). Throughput analysis of opportunistic access strategies in hybrid underlay-overlay cognitive radio networks. IEEE Transactions on Wireless Communications, 11(6), 2024–2035.CrossRefGoogle Scholar
  6. 6.
    Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.CrossRefGoogle Scholar
  7. 7.
    Urkowitz, H. (1967). Energy detection of unknown deterministic signals. Proceedings of IEEE, 55(4), 523–531.CrossRefGoogle Scholar
  8. 8.
    Liang, Y. C., Zeng, Y., Peh, E. C. Y., & Hoang, A. T. (2008). Sensing—Throughput tradeoff for cognitive radio network. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRefGoogle Scholar
  9. 9.
    Zhang, Q., Jia, J., & Zhang, J. (2009). Cooperative relay to improve diversity in cognitive radio networks. IEEE Communications Magazine, 47(2), 111–117.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636. Scholar
  11. 11.
    Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRefGoogle Scholar
  12. 12.
    Zhao, N., Zhang, S., Yu, F. R., Chen, Y., Nallanathan, A., & Leung, V. C. M. (2017). Exploiting interference for energy harvesting: A survey. IEEE Access Research Issues, and Challenges, 5, 10403–10421.CrossRefGoogle Scholar
  13. 13.
    Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.CrossRefGoogle Scholar
  14. 14.
    Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Wireless energy harvesting in interference alignment networks. IEEE Communications Magazine, 53(6), 72–78.CrossRefGoogle Scholar
  15. 15.
    Zhou, L., & Chao, H. C. (2011). Multimedia traffic security architecture for the internet of things. IEEE Network, 25(3), 35–40.CrossRefGoogle Scholar
  16. 16.
    Delfs, H., & Knebl, H. (2007). Introduction to cryptography: Principles and applications (2nd ed.). Berlin: Springer.CrossRefGoogle Scholar
  17. 17.
    Hong, Y. W. P., Lan, P. C., & Kuo, C. C. J. (2013). Enhancing physical-layer secrecy in multiantenna wireless systems: An overview of signal processing approaches. IEEE Signal Processing Magazine, 30(5), 29–40. Scholar
  18. 18.
    Wyner, A. D. (1975). The wire-tap channel. The Bell System Technical Journal, 54(8), 1355–1387. Scholar
  19. 19.
    Bloch, M., Barros, J., Rodrigues, M. R. D., & McLaughlin, S. W. (2008). Wireless information-theoretic security. IEEE Transactions on Information Theory, 54(6), 2515–2534.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Maji, P., Prasad, B., Roy, S. D., & Kundu, S. (2018). Secrecy outage of a cognitive radio network with selection of energy harvesting relay and imperfect CSI. Wireless Personal Communications, 100(2), 571–586.CrossRefGoogle Scholar
  21. 21.
    Prasad, B., Roy, S. D., & Kundu, S. (2014). Outage performance of cognitive relay network with imperfect channel estimation under proactive DF relaying. In Twentieth National Conference on Communications (NCC), Kanpur (pp. 1–6).Google Scholar
  22. 22.
    Maji, P., Dhar Roy, S., & Kundu, S. (2018). Physical layer security in cognitive radio network with energy harvesting relay and jamming in the presence of direct link. IET Communications, 12(11), 1389–1395.CrossRefGoogle Scholar
  23. 23.
    Suraweera, H. A., Smith, P. J., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59(4), 1811–1822.CrossRefGoogle Scholar
  24. 24.
    Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.CrossRefGoogle Scholar
  25. 25.
    Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series, and products (7th ed.). New York: Academic Press.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ECENIT DurgapurDurgapurIndia

Personalised recommendations