Advertisement

Traffic big data assisted V2X communications toward smart transportation

  • Chang An
  • Celimuge WuEmail author
Article
  • 42 Downloads

Abstract

In order to enable smart transportation, an efficient vehicle-to-everything (V2X) communication scheme is required. However, due to the mobility of vehicles and temporal varying features of vehicular environment, it is challenging to design an efficient communication scheme for vehicular networks. In this paper, we first give a review on the recent research efforts for solving communication challenges in vehicular networks, and then propose a traffic Big Data Assisted Communication scheme, BDAC, for vehicular networks. The proposed scheme uses past traffic big data to estimate the vehicle density and velocity, and then uses the prediction results to improve the V2X communications. We implement the proposed scheme in a multi-hop broadcast protocol to show the advantage of the proposed scheme by comparing with other baselines.

Keywords

V2X communications Big Data Assisted Communication scheme Traffic big data 

Notes

Acknowledgements

This research was supported in part by JSPS KAKENHI Grant Nos. 18KK0279, 19H04093, JST-Mirai Program Grant No. JPMJMI17B3, and the Telecommunications Advanced Foundation.

References

  1. 1.
    Wu, C., Liu, Z., Zhang, D., Yoshinaga, T., & Ji, Y. (2018). Spatial intelligence towards trustworthy vehicular IoT. IEEE Communications Magazine, 56(10), 22–27.CrossRefGoogle Scholar
  2. 2.
    Wu, J., Zou, L., Zhao, L., Al-Dubai, A., Mackenzie, L., & Min, G. (2019). A multi-UAV clustering strategy for reducing insecure communication range. Computer Networks, 158(10), 132–142.CrossRefGoogle Scholar
  3. 3.
    Wu, C., Yoshinaga, T., Ji, Y., Murase, T., & Zhang, Y. (2017). A reinforcement learning-based data storage scheme for vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 66(7), 6336–6348.CrossRefGoogle Scholar
  4. 4.
    Goudarzi, F., & Asgari, H. (2017). Non-cooperative beacon rate and awareness control for VANETs. IEEE Access, 5, 16858–16870.CrossRefGoogle Scholar
  5. 5.
    Lyu, F., Cheng, N., Zhou, H., Xu, W., Shi, W., Chen, J., et al. (2018). DBCC: Leveraging link perception for distributed beacon congestion control in VANETs. IEEE IoT Journal, 6(5), 4237–4249.Google Scholar
  6. 6.
    Dressler, F., Klingler, F., Sommer, C., & Cohen, R. (2018). Not all VANET broadcasts are the same: context-aware class based broadcast. IEEE/ACM Transactions on Networking, 26(1), 17–30.CrossRefGoogle Scholar
  7. 7.
    Wu, C., Chen, X., Ji, Y., Liu, F., Ohzahata, S., Yoshinaga, T., et al. (2015). Packet size-aware broadcasting in VANETs with fuzzy logic and RL-based parameter adaptation. IEEE Access, 3, 2481–2491.CrossRefGoogle Scholar
  8. 8.
    Wu, C., Ohzahata, S., & Kato, T. (2012). VANET broadcast protocol based on fuzzy logic and lightweight retransmission mechanism. IEICE Transactions on Communications, 95–B(2), 415–425.CrossRefGoogle Scholar
  9. 9.
    Abbasi, H. I., Voicu, R. C., Copeland, J., & Chang, Y. (2019). Towards fast and reliable multi-hop routing in VANETs. IEEE Transactions on Mobile Computing.  https://doi.org/10.1109/TMC.2019.2923230.CrossRefGoogle Scholar
  10. 10.
    Wisitpongphan, N., & Tonguz, K. O. (2007). Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wireless Communications, 14(6), 84–94.CrossRefGoogle Scholar
  11. 11.
    Tahmasbi-Sarvestani, A., Fallah, Y. P., & Kulathumani, V. (2015). Network-aware double-layer distance-dependent broadcast protocol for VANETs. IEEE Transactions on Vehicular Technology, 64(12), 5536–5546.CrossRefGoogle Scholar
  12. 12.
    Shah, S. S., Malik, A. W., Rahman, A. U., Iqbal, S., & Khan, S. U. (2019). Time barrier-based emergency message dissemination in vehicular ad-hoc networks. IEEE Access, 7, 16494–16503.CrossRefGoogle Scholar
  13. 13.
    Jia, K., Hou, Y., Niu, K., Dong, C., & He, Z. (2019). The delay-constraint broadcast combined with resource reservation mechanism and field test in VANET. IEEE Access, 7, 59600–59612.CrossRefGoogle Scholar
  14. 14.
    Kumar, S., Dohare, U., Kumar, K., Prasad, D., Qureshi, K. N., & Kharel, R. (2019). Cybersecurity measures for geocasting in vehicular cyber physical system environments. IEEE IoT Journal.  https://doi.org/10.1109/JIOT.2018.2872474.CrossRefGoogle Scholar
  15. 15.
    Li, P., Zhang, T., Huang, C., Chen, X., & Fu, B. (2017). RSU-assisted geocast in vehicular ad hoc networks. IEEE Wireless Communications, 24(1), 53–59.CrossRefGoogle Scholar
  16. 16.
    Zhang, F., Jin, B., Wang, Z., Liu, H., Hu, J., & Zhang, L. (2016). On geocasting over urban bus-based networks by mining trajectories. IEEE Transactions on Intelligent Transportation Systems, 17(6), 1734–1747.CrossRefGoogle Scholar
  17. 17.
    Zhou, Z., Chen, X., Li, E., Zeng, L., Luo, K., & Zhang, J. (2019). Edge intelligence paving the last mile of artificial intelligence with edge computing. Proceedings of the IEEE, 107(8), 1738–1762.CrossRefGoogle Scholar
  18. 18.
    Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. (2019). Optimized computation offloading performance in virtual edge computing systems via deep reinforcement learning. IEEE Internet of Things Journal, 6(3), 4005–4018.CrossRefGoogle Scholar
  19. 19.
    Hassan, N., Yau, K. A., & Wu, C. (2019). Edge computing in 5G: A review. IEEE Access, 7, 127276–127289.CrossRefGoogle Scholar
  20. 20.
    Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., & Wang, W. (2017). A survey on mobile edge networks: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779.CrossRefGoogle Scholar
  21. 21.
    Liu, S., Liu, L., Tang, J., Yu, B., Wang, Y., & Shi, W. (2019). Edge computing for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8), 1697–1716.CrossRefGoogle Scholar
  22. 22.
    Khattak, H. A., Islam, S. U., Din, I. U., & Guizani, M. (2019). Integrating fog computing with VANETs: A consumer perspective. IEEE Communications Standards Magazine, 3(1), 19–25.CrossRefGoogle Scholar
  23. 23.
    Peng, H., Ye, Q., & Shen, X. S. (2019). SDN-based resource management for autonomous vehicular networks: A multi-access edge computing approach. IEEE Wireless Communications, 26(4), 156–162.CrossRefGoogle Scholar
  24. 24.
    Hu, Q., Wu, C., Zhao, X., Chen, X., Ji, Y., & Yoshinaga, T. (2017). Vehicular multi-access edge computing with licensed sub-6 GHz, IEEE 802.11p and mmWave. IEEE Access, 6, 1995–2004.CrossRefGoogle Scholar
  25. 25.
    Hao, Y., Miao, Y., Hu, L., Hossain, M. S., Muhammad, G., & Amin, S. U. (2019). Smart-Edge-CoCaCo: AI-enabled smart edge with joint computation, caching, and communication in heterogeneous IoT. IEEE Network, 33(2), 58–64.CrossRefGoogle Scholar
  26. 26.
    Wu, C., Chen, X., Yoshinaga, T., Ji, Y., & Zhang, Y. (2019). Integrating licensed and unlicensed spectrum in the internet of vehicles with mobile edge computing. IEEE Network, 33(4), 48–53.CrossRefGoogle Scholar
  27. 27.
    Popescu, D., Jacquet, P., Mans, B., Dumitru, R., Pastrav, A., & Puschita, E. (2019). Information dissemination speed in delay tolerant urban vehicular networks in a hyperfractal setting. IEEE/ACM Transactions on Networking.  https://doi.org/10.1109/TNET.2019.2936636.CrossRefGoogle Scholar
  28. 28.
    Cui, J., Cao, S., Chang, Y., Wu, L., Liu, D., & Yang, Y. (2019). An adaptive spray and wait routing algorithm based on quality of node in delay tolerant network. IEEE Access, 7, 35274–35286.CrossRefGoogle Scholar
  29. 29.
    Chen, X., Wu, C., Bennis, M., Zhao, Z., & Han, Z. (2019). Learning to entangle radio resources in vehicular communications: An oblivious game-theoretic perspective. IEEE Transactions on Vehicular Technology, 68(5), 4262–4274.CrossRefGoogle Scholar
  30. 30.
    Chen, J., & Ran, X. (2019). Deep learning with edge computing: A review. Proceedings of the IEEE, 107(8), 1655–1674.CrossRefGoogle Scholar
  31. 31.
    Dai, Y., Xu, D., Maharjan, S., Qiao, G., & Zhang, Y. (2019). Artificial intelligence empowered edge computing and caching for internet of vehicles. IEEE Network, 26(3), 12–18.Google Scholar
  32. 32.
    Liu, G., Xu, Y., He, Z., Rao, Y., Xia, J., & Fan, L. (2019). Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles. IEEE Access, 7, 114487–114495.CrossRefGoogle Scholar
  33. 33.
    Zhou, Z., Yu, H., Xu, C., Zhang, Y., Mumtaz, S., & Rodriguez, J. (2018). Dependable content distribution in D2D-based cooperative vehicular networks: A big data-integrated coalition game approach. IEEE Transactions on Intelligent Transportation Systems, 19(3), 953–964.CrossRefGoogle Scholar
  34. 34.
    Lin, K., Luo, J., Hu, L., Hossain, M. S., & Ghoneim, A. (2017). Localization based on social big data analysis in the vehicular networks. IEEE Transactions on Industrial Informatics, 13(4), 1932–1940.CrossRefGoogle Scholar
  35. 35.
    Cheng, N., Lyu, F., Chen, J., Xu, W., Zhou, H., Zhang, S., et al. (2018). Big data driven vehicular networks. IEEE Network, 32(6), 160–167.CrossRefGoogle Scholar
  36. 36.
    Caltrans performance measurement system (PeMS). Reterived June 20, 2019 from http://pems.dot.ca.gov/.
  37. 37.
    Bai, S., et al. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv:1803.01271.
  38. 38.
    Wang, Y., & Tian, F. (2016). Recurrent residual learning for sequence classification. In EMNLP (pp. 938–943).Google Scholar
  39. 39.
    Guleng, S., Wu, C., Yoshinaga, T., & Ji, Y. (2019). Traffic big data assisted broadcast in vehicular networks. In Proceedings of ACM RACS, 5 pages.Google Scholar
  40. 40.
    The Network Simulator-ns-2. Retrieved June 23, 2019 from http://www.isi.edu/nsnam/ns/.
  41. 41.
    Khan, A., Sadhu, S., & Yeleswarapu, M. (2009). A comparative analysis of DSRC and 802.11 over vehicular ad hoc networks. Project Report, University of California, Santa Barbara (pp. 1–8).Google Scholar
  42. 42.
    Bai, F., Sadagopan, N., & Helmy, A. (2003). Important: A framework to systematically analyze the impact of mobility on performance of routing protocols for adhoc networks. In 22nd Annual joint conference of the IEEE computer and communications societies, San Francisco, USA (pp. 825–835).Google Scholar
  43. 43.
    Krajzewicz, D., Hertkorn, G., Rossel, C., & Wagner, P. (2002). SUMO (simulation of urban mobility): An open-source traffic simulation. In Proceedings of 4th middle east Symposium on simulation and modelling (MESM2002) (pp. 183–187). SCS European Publishing House.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Inner Mongolia Normal UniversityHohhotChina
  2. 2.The Graduate School of Informatics and EngineeringThe University of Electro-CommunicationsChofu-shiJapan

Personalised recommendations