Dispersed beamforming approach for secure communication in UDN

  • Garima Chopra
  • Rakesh Kumar JhaEmail author
  • Sanjeev Jain


Wireless communication systems are prone to many security breaches due to open nature of the medium and exponential a rise in subscribers. Hence, physical layer security (PLS) has emerged as one of the dominant low complexity alternatives to overcome the impact of eavesdropping by managing the physical characteristics of the medium. In this paper, we ensure PLS to moving users which tends to experience rise in handover, as a result of proximity between users and base station. This study is based on ultra-dense network (UDN). To tackle this challenge, novel secure beamforming named as beam broadening and beam merging have been proposed. Besides, we propose a synchronization approach called synchronized mobility clustering for UDN to reduce the overheads generated due to the exchange of information about moving users. More specifically, we derive an analytical expression for secrecy outage probability—an important security metric. The effect of proposed approaches have been validated through numerical results and the results show the effectiveness of the proposed approaches against eavesdropping. Finally, the performance of the proposed scheme is evaluated and compared with the conventional beamforming approach. However, this proposed approach works well for a varied density of users and location to be targeted.


Beamforming Security UDN SNR Beam merging Beam broadening Secrecy outage probability 



  1. 1.
    Paper, W. (2018). Cisco ultra 5G packet core solution.Google Scholar
  2. 2.
    Wang, Y., et al. (2017). A data-driven architecture for personalized QoE management in 5G wireless networks. IEEE Wireless Communications, 24(1), 102–110.CrossRefGoogle Scholar
  3. 3.
    Zhang, R., Song, L., Han, Z., & Jiao, B. (2012). Physical layer security for two-way untrusted relaying with friendly jammers. IEEE Transactions on Vehicular Technology, 61(8), 3693–3704.CrossRefGoogle Scholar
  4. 4.
    Su, Z., Hui, Y., & Guo, S. (2016). D2D-based content delivery with parked vehicles in vehicular social networks. IEEE Wireless Communications, 23(4), 90–95.CrossRefGoogle Scholar
  5. 5.
    Jiang, L., et al. (2016). Social-aware energy harvesting device-to-device communications in 5G networks. IEEE Wireless Communications, 23(4), 20–27.CrossRefGoogle Scholar
  6. 6.
    Su, Z., Xu, Q., Hui, Y., Wen, M., & Guo, S. (2017). A game theoretic approach to parked vehicle assisted content delivery in vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 66(7), 6461–6474.CrossRefGoogle Scholar
  7. 7.
    Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.CrossRefGoogle Scholar
  8. 8.
    Kamel, M., Hamouda, W., & Youssef, A. (2016). Ultra-dense networks: A survey. IEEE Communications Surveys & Tutorials, 18(4), 2522–2545.CrossRefGoogle Scholar
  9. 9.
    Duan, X., & Wang, X. (2015). Authentication handover and privacy protection in 5G hetnets using software-defined networking. IEEE Communications Magazine, 53(4), 28–35.CrossRefGoogle Scholar
  10. 10.
    Shiu, Y. S., Chang, S. Y., Wu, H. C., Huang, S. C. H., & Chen, H. H. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications, 18(2), 66–74.CrossRefGoogle Scholar
  11. 11.
    Chopra, G., Jha, R. K., & Jain, S. (2017). A survey on ultra-dense network and emerging technologies: Security challenges and possible solutions. Journal of Network and Computer Applications, 95, 54–78.CrossRefGoogle Scholar
  12. 12.
    Chopra, G., Jain, S., & Jha, R. K. (2018). Possible security attack modeling in ultradense networks using high-speed handover management. IEEE Transactions on Vehicular Technology, 67(3), 2178–2192.CrossRefGoogle Scholar
  13. 13.
    Sivanesan, K., Zou, J., Vasudevan, S., & Palat, S. (2015). Mobility performance optimization for 3GPP LTE HetNets. In Design and deployment of small cell networks (pp. 1–30).Google Scholar
  14. 14.
    Kutty, S., & Sen, D. (2016). Beamforming for millimeter wave communications: An inclusive survey. IEEE Communications Surveys & Tutorials, 18(2), 949–973.CrossRefGoogle Scholar
  15. 15.
    Sun, L., & Du, Q. (2017). Physical layer security with its applications in 5G networks: A review. China Communications, 14(12), 1–14.CrossRefGoogle Scholar
  16. 16.
    Lv, T., Gao, H., & Yang, S. (2015). Secrecy transmit beamforming for heterogeneous networks. IEEE Journal on Selected Areas in Communications, 33(6), 1154–1170.CrossRefGoogle Scholar
  17. 17.
    Zhang, Y., Ko, Y., Woods, R., & Marshall, A. (2017). Defining spatial secrecy outage probability for exposure region-based beamforming. IEEE Transactions on Wireless Communications, 16(2), 900–912.CrossRefGoogle Scholar
  18. 18.
    Han, B., Li, J., Su, J., Guo, M., & Zhao, B. (2015). Secrecy capacity optimization via cooperative relaying and jamming for WANETs. IEEE Transactions on Parallel and Distributed Systems, 26(4), 1117–1128.CrossRefGoogle Scholar
  19. 19.
    Costello, D. J. (2009) Fundamentals of wireless communication (Tse, D. and Viswanath, P.) [book review], 55(2).Google Scholar
  20. 20.
    Barros, J., & Rodrigues, M. R. D. (2006). Secrecy capacity of wireless channels. In IEEE international symposium on information theoryProceedings (pp. 356–360).Google Scholar
  21. 21.
    Liang, Y., Poor, H. V., & Shamai, S. (2008). Secure communication over fading channels. IEEE Transactions on Information Theory, 54(6), 2470–2492.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Gopala, P. K., Lai, L., & El Gamal, H. (2008). On the secrecy capacity of fading channels. IEEE Transactions on Information Theory, 54(10), 4687–4698.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Cumanan, K., Ding, Z., Sharif, B., Tian, G. Y., & Leung, K. K. (2014). Secrecy rate optimizations for a MIMO secrecy channel with a multiple-antenna eavesdropper. IEEE Transactions on Vehicular Technology, 63(4), 1678–1690.CrossRefGoogle Scholar
  24. 24.
    Liu, R., Maric, I., Spasojevic, P., & Yates, R. D. (2008). Discrete memoryless interference and broadcast channels with confidential messages: Secrecy rate regions. IEEE Transactions on Information Theory, 54(6), 2493–2507.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Choi, J. (2016). A robust beamforming approach to guarantee instantaneous secrecy rate. IEEE Transactions on Wireless Communications, 15(2), 1076–1085.CrossRefGoogle Scholar
  26. 26.
    Xiong, K., Wang, B., Jiang, C., & Liu, K. J. R. (2017). A broad beamforming approach for high-mobility communications. IEEE Transactions on Vehicular Technology, 66(11), 10546–10550.CrossRefGoogle Scholar
  27. 27.
    Zhu, F., & Yao, M. (2016). Improving physical-layer security for CRNs using SINR-based cooperative beamforming. IEEE Transactions on Vehicular Technology, 65(3), 1835–1841.CrossRefGoogle Scholar
  28. 28.
    Eltayeb, M. E., Choi, J., Al-Naffouri, T. Y., & Heath, R. W. (2017). Enhancing secrecy with multiantenna transmission in millimeter wave vehicular communication systems. IEEE Transactions on Vehicular Technology, 66(9), 8139–8151.CrossRefGoogle Scholar
  29. 29.
    Yan, S., & Malaney, R. (2016). Location-based beamforming for enhancing secrecy in rician wiretap channels. IEEE Transactions on Wireless Communications, 15(4), 2780–2791.CrossRefGoogle Scholar
  30. 30.
    Tsai, J. A., Buehrer, R. M., & Woerner, B. D. (2004). BER performance of a uniform circular array versus a uniform linear array in a mobile radio environment. IEEE Transactions on Wireless Communications, 3(3), 695–700.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Garima Chopra
    • 1
  • Rakesh Kumar Jha
    • 1
    Email author
  • Sanjeev Jain
    • 2
  1. 1.School of Electronics and Communication EngineeringShri Mata Vaishno Devi UniversityKatraIndia
  2. 2.IIITDM JabalpurKatraIndia

Personalised recommendations