Intensive Benchmarking of D2D communication over 5G cellular networks: prototype, integrated features, challenges, and main applications

  • Hanan H. HusseinEmail author
  • Hussein A. Elsayed
  • Sherine M. Abd El-kader


The evolving Fifth generation (5G) cellular wireless networks are envisioned to provide higher data rates, lower end-to-end latency, and lower energy consumption for devices. In order to achieve 5G requirements, a lot of new technologies are needed to operate in 5G. Device-to-device communication (D2D) is one of the key technologies provided to enhance 5G performance. D2D is direct communication between two devices without involvement of any central point (i.e. base station). It is a recommended technique to enhance the energy efficiency, throughput, latency, and spectrum utilization in cellular networks. This paper provides an intensive benchmarking of the integration of D2D communication into cellular network focusing on the potential advantages, different recent prototypes, classifications, and applications for D2D technology. Finally, the paper addresses the D2D related main topics and indicates the major possible challenges that face most researchers.


Device-to-Device 5G cellular networks Prototype IoT Vehicle-to-Vehicle Green communication Artificial intelligence 



  1. 1.
    Shafi, M., Molisch, A. F., Smith, P. J., Haustein, T., Zhu, P., De Silva, P., et al. (2017). 5G: a tutorial overview of standards, trials, challenges, deployment, and practice. IEEE Journal on Selected Areas in Communications, 35(6), 1201–1221.CrossRefGoogle Scholar
  2. 2.
    Kazi, B. U., & Wainer, G. A. (2019). Next generation wireless cellular networks: Ultra-dense multi-tier and multi-cell cooperation perspective. Wireless Networks, 25(4), 2041–2064.CrossRefGoogle Scholar
  3. 3.
    Jameel, F., Hamid, Z., Jabeen, F., Zeadally, S., & Javed, M. A. (2018). A survey of device-to-device communications: Research issues and challenges. IEEE Communications Surveys & Tutorials, 20(3), 2133–2168.CrossRefGoogle Scholar
  4. 4.
    Lien, S. Y., Chien, C. C., Tseng, F. M., & Ho, T. C. (2016). 3GPP device-to-device communications for beyond 4G cellular networks. IEEE Communications Magazine, 54(3), 29–35.CrossRefGoogle Scholar
  5. 5.
    Nardini, G., Stea, G., Virdis, A., Sabella, D., & Caretti, M. (2017). Resource allocation for network-controlled device-to-device communications in LTE-Advanced. Wireless Networks, 23(3), 787–804.CrossRefGoogle Scholar
  6. 6.
    Mach, P., Becvar, Z., & Vanek, T. (2015). In-band device-to-device communication in OFDMA cellular networks: A survey and challenges. IEEE Communications Surveys & Tutorials, 17(4), 1885–1922.CrossRefGoogle Scholar
  7. 7.
    Chen, Z., Zhao, H., Cao, Y., & Jiang, T. (2015). Load balancing for D2D-based relay communications in heterogeneous network. In 2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (pp. 23–29). IEEE.Google Scholar
  8. 8.
    Pham-Thi, H., Hoang-Van, H., & Miyoshi, T. (2015). Correlating objective factors with video quality experienced by end users on P2PTV. International Journal of Computer Networks and Communications, 7(3), 59–73.CrossRefGoogle Scholar
  9. 9.
    Chen, Y., Zhang, B., Liu, Y., & Zhu, W. (2013). Measurement and modeling of video watching time in a large-scale internet video-on-demand system. IEEE Transactions on Multimedia, 15(8), 2087–2098.CrossRefGoogle Scholar
  10. 10.
    Misic, J. B., & Misic, V. B. (2017). Adapting LTE/LTE-A to M2M and D2D communications. IEEE Network, 31(3), 63–69.CrossRefGoogle Scholar
  11. 11.
    Virdis, A., Vallati, C., Nardini, G., Tanganelli, G., Stea, G., & Mingozzi, E. (2018). D2D communications for large-scale fog platforms: Enabling direct M2M interactions. IEEE Vehicular Technology Magazine, 13(2), 24–33.CrossRefGoogle Scholar
  12. 12.
    Ali, K., Nguyen, H. X., Vien, Q. T., & Shah, P. (2015). Disaster management communication networks: Challenges and architecture design. In 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops) (pp. 537–542). IEEE.Google Scholar
  13. 13.
    Yaacoub, E., & Kubbar, O. (2012). Energy-efficient device-to-device communications in LTE public safety networks. In 2012 IEEE Globecom Workshops (pp. 391–395). IEEE.Google Scholar
  14. 14.
    Ali, K., Nguyen, H. X., Shah, P., Vien, Q. T., & Bhuvanasundaram, N. (2016). Architecture for public safety network using D2D communication. In 2016 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 206–211). IEEE.Google Scholar
  15. 15.
    Ali, K., Nguyen, H. X., Vien, Q. T., Shah, P., & Chu, Z. (2018). Disaster management using D2D communication with power transfer and clustering techniques. IEEE Access, 6, 14643–14654.CrossRefGoogle Scholar
  16. 16.
    Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., Laroia, R., et al. (2013). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. IEEE/ACM Transactions on Networking (ToN), 21(4), 1215–1228.CrossRefGoogle Scholar
  17. 17.
    Bao, X., Lin, Y., Lee, U., Rimac, I., & Choudhury, R. R. (2013). Dataspotting: Exploiting naturally clustered mobile devices to offload cellular traffic. In 2013 Proceedings IEEE INFOCOM (pp. 420–424). IEEE.Google Scholar
  18. 18.
    Nishiyama, H., Ito, M., & Kato, N. (2014). Relay-by-smartphone: Realizing multihop device-to-device communications. IEEE Communications Magazine, 52(4), 56–65.CrossRefGoogle Scholar
  19. 19.
    Devos, M., Ometov, A., Mäkitalo, N., Aaltonen, T., Andreev, S., & Koucheryavy, Y. (2016). D2D communications for mobile devices: Technology overview and prototype implementation. In 2016 8th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT) (pp. 124–129). IEEE.Google Scholar
  20. 20.
    Raghavan, V., Partyka, A., Akhoondzadeh-Asl, L., Tassoudji, M. A., Koymen, O. H., & Sanelli, J. (2017). Millimeter wave channel measurements and implications for PHY layer design. IEEE Transactions on Antennas and Propagation, 65(12), 6521–6533.CrossRefGoogle Scholar
  21. 21.
    Zhang, J., Ge, X., Li, Q., Guizani, M., & Zhang, Y. (2016). 5G millimeter-wave antenna array: Design and challenges. IEEE Wireless Communications, 24(2), 106–112.CrossRefGoogle Scholar
  22. 22.
    Bahadori, N., Namvar, N., Kelley, B., & Homaifar, A. (2018). Device-to-device communications in the millimeter wave band: A novel distributed mechanism. In 2018 Wireless Telecommunications Symposium (WTS) (pp. 1–6). IEEE.Google Scholar
  23. 23.
    Qiao, J., Shen, X. S., Mark, J. W., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215.CrossRefGoogle Scholar
  24. 24.
    Araniti, G., Campolo, C., Condoluci, M., Iera, A., & Molinaro, A. (2013). LTE for vehicular networking: A survey. IEEE Communications Magazine, 51(5), 148–157.CrossRefGoogle Scholar
  25. 25.
    Sun, W., Ström, E. G., Brännström, F., Sou, K. C., & Sui, Y. (2015). Radio resource management for D2D-based V2V communication. IEEE Transactions on Vehicular Technology, 65(8), 6636–6650.CrossRefGoogle Scholar
  26. 26.
    Liang, L., Li, G. Y., & Xu, W. (2017). Resource allocation for D2D-enabled vehicular communications. IEEE Transactions on Communications, 65(7), 3186–3197.CrossRefGoogle Scholar
  27. 27.
    Liang, L., Xie, S., Li, G. Y., Ding, Z., & Yu, X. (2018). Graph-based resource sharing in vehicular communication. IEEE Transactions on Wireless Communications, 17(7), 4579–4592.CrossRefGoogle Scholar
  28. 28.
    Wang, D., Chen, D., Song, B., Guizani, N., Yu, X., & Du, X. (2018). From IoT to 5G I-IoT: The next generation IoT-based intelligent algorithms and 5G technologies. IEEE Communications Magazine, 56(10), 114–120.CrossRefGoogle Scholar
  29. 29.
    Salem, M. A., Tarrad, I. F., Youssef, M. I., & El-Kader, S. M. A. (2019). QoS categories activeness-aware adaptive EDCA algorithm for dense IOT networks. arXiv preprint arXiv:1906.03093.
  30. 30.
    Chernyshev, M., Baig, Z., Bello, O., & Zeadally, S. (2017). Internet of Things (IoT): Research, simulators, and testbeds. IEEE Internet of Things Journal, 5(3), 1637–1647.CrossRefGoogle Scholar
  31. 31.
    Bello, O., & Zeadally, S. (2014). Intelligent device-to-device communication in the internet of things. IEEE Systems Journal, 10(3), 1172–1182.CrossRefGoogle Scholar
  32. 32.
    Li, Y., Liang, Y., Liu, Q., & Wang, H. (2018). Resources allocation in multicell D2D communications for internet of things. IEEE Internet of Things Journal, 5(5), 4100–4108.CrossRefGoogle Scholar
  33. 33.
    Liu, Y. (2016). Optimal mode selection in D2D-enabled multibase station systems. IEEE Communications Letters, 20(3), 470–473.CrossRefGoogle Scholar
  34. 34.
    Yu, G., Xu, L., Feng, D., Yin, R., Li, G. Y., & Jiang, Y. (2014). Joint mode selection and resource allocation for device-to-device communications. IEEE Transactions on Communications, 62(11), 3814–3824.CrossRefGoogle Scholar
  35. 35.
    Gao, C., Sheng, X., Tang, J., Zhang, W., Zou, S., & Guizani, M. (2014). Joint mode selection, channel allocation and power assignment for green device-to-device communications. In 2014 IEEE International Conference on Communications (ICC) (pp. 178–183). IEEE.Google Scholar
  36. 36.
    Della Penda, D., Fu, L., & Johansson, M. (2015). Mode selection for energy efficient D2D communications in dynamic TDD systems. In 2015 IEEE International Conference on Communications (ICC) (pp. 5404–5409). IEEE.Google Scholar
  37. 37.
    Della Penda, D., Fu, L., & Johansson, M. (2016). Energy efficient D2D communications in dynamic TDD systems. IEEE Transactions on Communications, 65(3), 1260–1273.CrossRefGoogle Scholar
  38. 38.
    Han, M. H., Kim, B. G., & Lee, J. W. (2012). Subchannel and transmission mode scheduling for D2D communication in OFDMA networks. In 2012 IEEE Vehicular Technology Conference (VTC Fall) (pp. 1–5). IEEE.Google Scholar
  39. 39.
    Lei, L., Shen, X. S., Dohler, M., Lin, C., & Zhong, Z. (2014). Queuing models with applications to mode selection in device-to-device communications underlaying cellular networks. IEEE Transactions on Wireless Communications, 13(12), 6697–6715.CrossRefGoogle Scholar
  40. 40.
    Yao, M., Sohul, M., Marojevic, V., & Reed, J. H. (2019). Artificial intelligence defined 5G radio access networks. IEEE Communications Magazine, 57(3), 14–20.CrossRefGoogle Scholar
  41. 41.
    Wang, X., Li, X., & Leung, V. C. (2015). Artificial intelligence-based techniques for emerging heterogeneous network: State of the arts, opportunities, and challenges. IEEE Access, 3, 1379–1391.CrossRefGoogle Scholar
  42. 42.
    Khan, M., Alam, M., Moullec, Y., & Yaacoub, E. (2017). Throughput-aware cooperative reinforcement learning for adaptive resource allocation in device-to-device communication. Future Internet, 9(4), 72.CrossRefGoogle Scholar
  43. 43.
    Nie, S., Fan, Z., Zhao, M., Gu, X., & Zhang, L. (2016). Q-learning based power control algorithm for D2D communication. In 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC) (pp. 1–6). IEEE.Google Scholar
  44. 44.
    Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access, 5, 11727–11758.CrossRefGoogle Scholar
  45. 45.
    Gandotra, P., & Jha, R. K. (2017). A survey on green communication and security challenges in 5G wireless communication networks. Journal of Network and Computer Applications, 96, 39–61.CrossRefGoogle Scholar
  46. 46.
    Datsika, E., Antonopoulos, A., Zorba, N., & Verikoukis, C. (2016). Green cooperative device-to-device communication: A social-aware perspective. IEEE Access, 4, 3697–3707.CrossRefGoogle Scholar
  47. 47.
    Kai, C., Li, H., Xu, L., Li, Y., & Jiang, T. (2018). Energy-efficient device-to-device communications for green smart cities. IEEE Transactions on Industrial Informatics, 14(4), 1542–1551.CrossRefGoogle Scholar
  48. 48.
    Zhang, H., Liao, Y., & Song, L. (2017). D2D-U: Device-to-device communications in unlicensed bands for 5G system. IEEE Transactions on Wireless Communications, 16(6), 3507–3519.CrossRefGoogle Scholar
  49. 49.
    Nguyen, P., Wijesinghe, P., Palipana, R., Lin, K., & Vasic, D. (2014). Network-assisted device discovery for LTE-based D2D communication systems. In 2014 IEEE international conference on communications (ICC) (pp. 3160–3165). IEEE.Google Scholar
  50. 50.
    Jung, S., & Chang, S. (2014). A discovery scheme for device-to-device communications in synchronous distributed networks. In 16th International Conference on Advanced Communication Technology (pp. 815–819). IEEE.Google Scholar
  51. 51.
    Lu, Q., Miao, Q., Fodor, G., & Brahmi, N. (2014). Clustering schemes for D2D communications under partial/no network coverage. In 2014 IEEE 79th Vehicular Technology Conference (VTC Spring) (pp. 1–5). IEEE.Google Scholar
  52. 52.
    Chen, H. Y., Shih, M. J., & Wei, H. Y. (2015). Handover mechanism for device-to-device communication. In 2015 IEEE Conference on Standards for Communications and Networking (CSCN) (pp. 72–77). IEEE.Google Scholar
  53. 53.
    Yilmaz, O. N., Li, Z., Valkealahti, K., Uusitalo, M. A., Moisio, M., Lundén, P., & Wijting, C. (2014). Smart mobility management for D2D communications in 5G networks. In 2014 IEEE Wireless Communications and Networking Conference Workshops (WCNCW) (pp. 219–223). IEEE.Google Scholar
  54. 54.
    Radwan, A., & Rodriguez, J. (Eds.). (2014). Energy efficient smart phones for 5G networks. Berlin: Springer.Google Scholar
  55. 55.
    Peng, T., Lu, Q., Wang, H., Xu, S., & Wang, W. (2009). Interference avoidance mechanisms in the hybrid cellular and device-to-device systems. In 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 617–621). IEEE.Google Scholar
  56. 56.
    Xu, S., Wang, H., Peng, T., & Huang, Q. (2010). Effective labeled time slots based D2D transmission in cellular downlink spectrums. In 2010 IEEE 71st Vehicular Technology Conference (pp. 1–5). IEEE.Google Scholar
  57. 57.
    Gu, J., Bae, S. J., Choi, B. G., & Chung, M. Y. (2011). Dynamic power control mechanism for interference coordination of device-to-device communication in cellular networks. In 2011 Third International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 71–75). IEEE.Google Scholar
  58. 58.
    Han, T., Yin, R., Xu, Y., & Yu, G. (2012). Uplink channel reusing selection optimization for device-to-device communication underlaying cellular networks. In 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications-(PIMRC) (pp. 559–564). IEEE.Google Scholar
  59. 59.
    Peng, B., Hu, C., Peng, T., & Wang, W. (2012). Optimal resource allocation for multi-D2D links underlying OFDMA-based communications. In 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing (pp. 1–4). IEEE.Google Scholar
  60. 60.
    Zhu, X., Wen, S., Cao, G., Zhang, X., & Yang, D. (2012). QoS-based resource allocation scheme for device-to-device (D2D) radio underlaying cellular networks. In 2012 19th International Conference on Telecommunications (ICT) (pp. 1–6). IEEE.Google Scholar
  61. 61.
    Duong, Q., Shin, Y., & Shin, O. S. (2013). Resource allocation scheme for device-to-device communications underlaying cellular networks. In Proceedings of International Conference ComManTel, Ho Chi Minh City, Vietnam (pp. 66–69).Google Scholar
  62. 62.
    Chae, H. S., Gu, J., Choi, B. G., & Chung, M. Y. (2011). Radio resource allocation scheme for device-to-device communication in cellular networks using fractional frequency reuse. In The 17th Asia Pacific Conference on Communications (pp. 58–62). IEEE.Google Scholar
  63. 63.
    Hajiaghayi, M., Wijting, C., Ribeiro, C., & Hajiaghayi, M. T. (2014). Efficient and practical resource block allocation for LTE-based D2D network via graph coloring. Wireless Networks, 20(4), 611–624.CrossRefGoogle Scholar
  64. 64.
    Yu, C. H., Doppler, K., Ribeiro, C. B., & Tirkkonen, O. (2011). Resource sharing optimization for device-to-device communication underlaying cellular networks. IEEE Transactions on Wireless Communications, 10(8), 2752–2763.CrossRefGoogle Scholar
  65. 65.
    Yu, C. H., Tirkkonen, O., Doppler, K., & Ribeiro, C. (2009). Power optimization of device-to-device communication underlaying cellular communication. In 2009 IEEE International Conference on Communications (pp. 1–5). IEEE.Google Scholar
  66. 66.
    Yu, C. H., Doppler, K., Ribeiro, C., & Tirkkonen, O. (2009). Performance impact of fading interference to device-to-device communication underlaying cellular networks. In 2009 IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 858–862). IEEE.Google Scholar
  67. 67.
    Hussein, H. H., & El-Kader, S. M. A. (2017). Enhancing signal to noise interference ratio for device to device technology in 5G applying mode selection technique. In 2017 International Conference on Advanced Control Circuits Systems (ACCS) Systems & 2017 International Conference on New Paradigms in Electronics & Information Technology (PEIT) (pp. 187–192). IEEE.Google Scholar
  68. 68.
    Xiang, S., Quan, Q., Peng, T., & Wang, W. (2012). Performance analysis of cooperative mode selection in hybrid D2D and IMT-advanced network. In 7th International Conference on Communications and Networking in China (pp. 717–721). IEEE.Google Scholar
  69. 69.
    Omorinoye, A. A., Vien, Q. T., Le, T. A., & Shah, P. (2019). On the resource allocation for D2D underlaying uplink cellular networks. In 26th International Conference on Telecommunications (ICT), 08–10 Apr 2019, Hanoi, Vietnam.Google Scholar
  70. 70.
    Jung, M., Hwang, K., & Choi, S. (2012). Joint mode selection and power allocation scheme for power-efficient device-to-device (D2D) communication. In 2012 IEEE 75th Vehicular Technology Conference (VTC Spring) (pp. 1–5). IEEE.Google Scholar
  71. 71.
    Tsolkas, D., Liotou, E., Passas, N., & Merakos, L. (2012). A graph-coloring secondary resource allocation for D2D communications in LTE networks. In 2012 IEEE 17th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD) (pp. 56–60). IEEE.Google Scholar
  72. 72.
    Wang, F., Song, L., Han, Z., Zhao, Q., & Wang, X. (2013). Joint scheduling and resource allocation for device-to-device underlay communication. In 2013 IEEE Wireless Communications and Networking Conference (WCNC) (pp. 134–139). IEEE.Google Scholar
  73. 73.
    Wang, M., & Yan, Z. (2017). A survey on security in D2D communications. Mobile Networks and Applications, 22(2), 195–208.CrossRefGoogle Scholar
  74. 74.
    Alam, M., Yang, D., Rodriguez, J., & Abd-Alhameed, R. A. (2014). Secure device-to-device communication in LTE-A. IEEE Communications Magazine, 52(4), 66–73.CrossRefGoogle Scholar
  75. 75.
    Zhang, A., Wang, L., Ye, X., & Lin, X. (2016). Light-weight and robust security-aware D2D-assist data transmission protocol for mobile-health systems. IEEE Transactions on Information Forensics and Security, 12(3), 662–675.CrossRefGoogle Scholar
  76. 76.
    Abualhaol, I., & Muegge, S. (2016). Securing D2D wireless links by continuous authenticity with legitimacy patterns. In 2016 49th Hawaii International Conference on System Sciences (HICSS) (pp. 5763–5771). IEEE.Google Scholar
  77. 77.
    Sedidi, R., & Kumar, A. (2016, March). Key exchange protocols for secure device-to-device (D2D) communication in 5G. In 2016 Wireless Days (WD) (pp. 1–6). IEEE.Google Scholar
  78. 78.
    Pizzi, S., Suraci, C., Militano, L., Orsino, A., Molinaro, A., Iera, A., et al. (2018). Enabling trustworthy multicast wireless services through D2D communications in 5G networks. Future Internet, 10(7), 66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computers and SystemsElectronics Research InstituteGizaEgypt
  2. 2.Department of Electronics and Communications EngineeringAin Shams UniversityCairoEgypt

Personalised recommendations