Advertisement

Wireless Networks

, Volume 25, Issue 8, pp 4921–4946 | Cite as

A survey on wireless sensor network databases

  • Abderrahmen BelfkihEmail author
  • Claude Duvallet
  • Bruno Sadeg
Article
  • 81 Downloads

Abstract

In recent years, the use of wireless sensors has increased drastically in most fields. Wireless Sensor Networks (WSNs) have attracted the interest of industries and they have been used in several application areas (military, health, transportation, agriculture). WSNs are ad-hoc networks, composed of sensor nodes, which are deployed in an area of interest, in order to monitor and to return information requested by users. Sensor data is transmitted to users over a central station, named base station. Data collection becomes more difficult when the number of sensors increases. Since about a decade, intensive research has started in order to deal with these problems. Many researchers suggested to structure the sensor data in the form of a database and reduce the number of communications and energy consumption in the network. They have often considered the network as a large database and the sensor node as a virtual table. In this article, the existing sensor database approaches in WSNs are studied. Firstly, we will provide the definition of sensor databases, then we will present their architecture and their characteristics. Thereafter, we will present and compare existing sensor database systems. Finally, we will conclude this paper with a discussion of some research issues in the field of sensor databases.

Keywords

Wireless sensor network Sensor network database Query processing Sensor data management 

Notes

References

  1. 1.
    Abdaoui, A., & El-Fouly, T. M. (2014). TOSSIM and distributed binary consensus algorithm in wireless sensor networks. Journal Network and Computer Applications, 41, 451–458.Google Scholar
  2. 2.
    Abramova, V., & Bernardino, J. (2013). Nosql databases: Mongodb vs cassandra. In Proceedings of the international conference on computer science and software engineering, C3S2E ’13 (pp. 14–22). ACM, New York, NY, USA.Google Scholar
  3. 3.
    Adam, D., & Tsiftes, N. (2011). A database in every sensor. In Proceedings of the ACM conference on networked embedded sensor systems. ACM, Seattle, WA, USA.Google Scholar
  4. 4.
    Akpinar, K., Hua, K.A., & Li, K. (2015). Thingstore: A platform for internet-of-things application development and deployment. In Proceedings of the 9th ACM international conference on distributed event-based systems, DEBS ’15 (pp. 162–173). ACM, New York, NY, USA.Google Scholar
  5. 5.
    Alabdulatif, A., Khalil, I., Yi, X., & Guizani, M. (2019). Secure edge of things for smart healthcare surveillance framework. IEEE Access, 7, 31010–31021.Google Scholar
  6. 6.
    Alami, A. E., Bahaj, M., & Khourdifi, Y. (2018). Supply of a key value database redis in-memory by data from a relational database. In IEEE mediterranean electrotechnical conference (MELECON) (pp. 46–51).Google Scholar
  7. 7.
    Alsboui, M. T., AB Uarqoub, A., Hammoudeh, M., Bandar, Z., & Nisbet, A. (2012). Information extraction from wireless sensor networks: System and approaches. Sensors and Transducers Journal, 14(2), 1–17.Google Scholar
  8. 8.
    Amato, G., Chessa, S., & Vairo, C. (2010). MaD-WiSe: A distributed stream management system for wireless sensor networks. Software: Practice and Experience, 40(5), 431–451.Google Scholar
  9. 9.
    Anamalamudi, S., Sangi, A. R., Alkatheiri, M., & Ahmed, A. M. (2018). AODV routing protocol for cognitive radio access based internet of things (IoT). Future Generation Computer Systems, 83, 228–238.Google Scholar
  10. 10.
    Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.zbMATHGoogle Scholar
  11. 11.
    Azqueta-Alzaz, A., Patio-Martinez, M., Brondino, I., & Jimenez-Peris, R. (2017). Massive data load on distributed database systems over HBase. In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID) (pp. 776–779).Google Scholar
  12. 12.
    Bermúdez-Edo, M., Elsaleh, T., Barnaghi, P. M., & Taylor, K. (2017). IoT-Lite: A lightweight semantic model for the internet of things and its use with dynamic semantics. Personal and Ubiquitous Computing, 21(3), 475–487.Google Scholar
  13. 13.
    Bonnet, P., Gehrke, J., & Seshadri, P. (2001). Towards Sensor Database Systems. In Proceedings of the international conference on mobile data management (pp. 3–14). Springer-Verlag, London, UK.Google Scholar
  14. 14.
    Botta, A., de Donato, W., Persico, V., & Pescapè, A. (2016). Integration of cloud computing and internet of things: A survey. Future Generation Computer Systems, 56, 684–700.Google Scholar
  15. 15.
    Chaiporn, J., Chavalit, S., & Chien-Chung, S. (2000). Querying and tasking in sensor networks. In Proceedings of the international symposium on aerospace/defense sensing, simulation, and control (pp. 184–197). SPIE–The International Society for Optical Engineering.Google Scholar
  16. 16.
    Chipara, O., Lu, C., & Stankovic, J. (2006). Dynamic conflict-free query scheduling for wireless sensor networks. In Proceedings of the IEEE international conference on network protocols (pp. 321–331). IEEE Computer Society, Washington, DC, USAGoogle Scholar
  17. 17.
    Compton, M., Barnaghi, P., Bermudez, L., Garca-Castro, R., Corcho, O., Cox, S., et al. (2012). The SSN ontology of the W3C semantic sensor network incubator group. Journal of Web Semantics, 17, 25–32.Google Scholar
  18. 18.
    Daniel, T. E., Newman, R. M., Gaura, E. I., & Mount, S. N. (2007). Complex query processing in wireless sensor networks. In Proceedings of the workshop on performance monitoring and measurement of heterogeneous wireless and wired networks (pp. 53–60). ACM, New York, NY, USA.Google Scholar
  19. 19.
    Dawborn, T., & Khoury, R. (2010). Corona developers guide. Technical report, University of Sydney.Google Scholar
  20. 20.
    Dhand, G., & Tyagi, S. (2016). Data aggregation techniques in WSN: Survey. Procedia Comput. Sci., 92, 378–384.Google Scholar
  21. 21.
    Diallo, O., Rodrigues, J. J., & Sene, M. (2012). Real-time data management on wireless sensor networks: A survey. Journal of Network and Computer Applications, 35(3), 1013–1021.Google Scholar
  22. 22.
    Diallo, O., Rodrigues, J. J. P. C., Sene, M., & Mauri, J. L. (2015). Distributed database management techniques for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(2), 604–620.Google Scholar
  23. 23.
    Diallo, O., Rodrigues, J. J. P. C., Sene, M., & Xia, F. (2015). Real-time query processing optimisation for wireless sensor networks. International Journal of Sensor Networks, 18(1/2), 49–61.Google Scholar
  24. 24.
    Elias, A., Rodrigues, J., Oliveira, L., & Zarpelao, B. (2012). A ubiquitous model for wireless sensor networks monitoring. In International conference on innovative mobile and internet services in ubiquitous computing (pp. 835–839). IEEE.Google Scholar
  25. 25.
    Erman, A. T., Mutter, T., van Hoesel, L., & Havinga, P. J. M. (2009). A cross-layered communication protocol for load balancing in large scale multi-sink wireless sensor networks. In International symposium on autonomous decentralized systems (pp. 223–230), Athens, Greece.Google Scholar
  26. 26.
    Fatima, H., & Wasnik, K. (2016). Comparison of SQL, NoSQL and NewSQL databases for internet of things. In 2016 IEEE Bombay Section Symposium (IBSS) (pp. 1–6).Google Scholar
  27. 27.
    Ferreira, D., Corista, P., Gio, J., Ghimire, S., Sarraipa, J., & Jardim-Gonalves, R. (2017). Towards smart agriculture using fiware enablers. In 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC) (pp. 1544–1551).Google Scholar
  28. 28.
    Fouad, M. M., Oweis, N. E., Gaber, T., Ahmed, M., & Snasel, V. (2015). Data mining and fusion techniques for wsns as a source of the big data. Procedia Computer Science, 65, 778–786.Google Scholar
  29. 29.
    Fung, W. F., Sun, D., & Gehrke, J. (2002). COUGAR: The network is the database. In Proceedings of the international conference on Management of data (pp. 621–621), ACM, New York, NY, USA.Google Scholar
  30. 30.
    Gajjar, S., Choksi, N., Sarkar, M., & Dasgupta, K. (2014). Comparative analysis of wireless sensor network motes. In 2014 International Conference on Signal Processing and Integrated Networks (SPIN) (pp. 426–431).Google Scholar
  31. 31.
    Galindo-Serrano, A., & Giupponi, L. (2010). Distributed q-learning for aggregated interference control in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(4), 1823–1834.Google Scholar
  32. 32.
    Govindan, R., Hellerstein, J., Hong, W., Madden, S., Franklin, M., & Shenker, S. (2002). The sensor network as a database. Technical Report 02-771, USC Information Sciences Institute.Google Scholar
  33. 33.
    Hahm, O., Baccelli, E., Petersen, H., & Tsiftes, N. (2016). Operating systems for low-end devices in the internet of things: A survey. IEEE Internet of Things Journal, 3(5), 720–734.Google Scholar
  34. 34.
    Hu, F., & Cao, X. (2010). Sensor data management. In Wireless sensor networks: Principles and practice (pp. 237–257). SCRC Press, Taylor & Francis Group.Google Scholar
  35. 35.
    Jabeen, F., & Nawaz, S. (2015). In-network wireless sensor network query processors: State of the art, challenges and future directions. Information Fusion, 25, 1–15.Google Scholar
  36. 36.
    Jaikaeo, C., Srisathapornphat, C., & Shen, C. C. (2000). Sensor information networking architecture. In Proceedings of the international workshop on parallel processing (pp. 23–30). IEEE.Google Scholar
  37. 37.
    Jun Zheng, A. J. (2009). Wireless sensor networks: A networking perspective (1st ed.). Hoboken: Wiley-IEEE Press.zbMATHGoogle Scholar
  38. 38.
    Kanzaki, A., Hara, T., Ishi, Y., Yoshihisa, T., Teranishi, Y., & Shimojo, S. (2010). X-sensor: Wireless sensor network testbed integrating multiple networks. In T. Hara, V. I. Zadorozhny, & E. Buchmann (Eds.), Wireless sensor network technologies for the information explosion era (Vol. 278, pp. 249–271)., Studies in computational intelligence Berlin: Springer.Google Scholar
  39. 39.
    Kaur, K., & Sachdeva, M. (2017). Performance evaluation of NewSQL databases. In 2017 International Conference on Inventive Systems and Control (ICISC) (pp. 1–5).Google Scholar
  40. 40.
    Kellner, S. (2010). Flexible online energy accounting in TinyOS. In Proceedings of the International Workshop in Real-World Wireless Sensor Networks (pp. 62–73). Springer, Colombo, Sri Lanka.Google Scholar
  41. 41.
    Khan, M. I., Gansterer, W. N., & Haring, G. (2013). Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36(9), 965–978.Google Scholar
  42. 42.
    Khoury, R., Dawborn, T., Gafurov, B., Pink, G., Tse, E., Tse, Q., et al. (2010). Corona: Energy-efficient multi-query processing in wireless sensor networks. In H. Kitagawa, Y. Ishikawa, Q. Li, & C. Watanabe (Eds.), Database systems for advanced applications (Vol. 5982, pp. 416–419)., Lecture notes in computer science Berlin: Springer.Google Scholar
  43. 43.
    Kiani, F., Amiri, E., Zamani, M., Khodadadi, T., & Manaf, A. A. (2015). Efficient intelligent energy routing protocol in wireless sensor networks. International Journal of Distributed Sensor Networks, 11, 1–13.Google Scholar
  44. 44.
    Kofoed, L. M. (2007). Enhancing sensor network programming: Extending TinyDB with HAVING and aggregation, and investigating TinyDB reliability. Master’s thesis, University of Oslo, Oslo, Norvège.Google Scholar
  45. 45.
    Levis, P., & Gay, D. (2009). TinyOS programming (1st ed.). Cambridge: Cambridge University Press.Google Scholar
  46. 46.
    Li, J., Cai, Z., & Li, J. (2008). Data management in sensor networks. In Y. Li, M. T. Thai, & W. Wu (Eds.), Wireless sensor networks and applications (pp. 287–330). Berlin: Springer.Google Scholar
  47. 47.
    Li, X., Liu, W., Xie, M., Liu, A., Zhao, M., Xiong, N. N., et al. (2018). Differentiated data aggregation routing scheme for energy conserving and delay sensitive wireless sensor networks. Sensors, 18(7), 2349.Google Scholar
  48. 48.
    Li, Y., Thai, M. T., & Wu, W. (2008). Wireless sensor networks and applications. Berlin: Springer.Google Scholar
  49. 49.
    Lim, C., Lee, J., Park, M., & Hyun, S. J. (2015). Design and implementation of spatial operators and energy-efficient query processing strategy in wireless sensor network database system. International Journal of Distributed Sensor Networks, 11(6), 509,471:1–509,471:17.Google Scholar
  50. 50.
    Madden, S., J. Franklin, M., M. Hellerstein, J., & Hong, W. (2005). TinyDB: An acquisitional query processing system for sensor networks. ACM Transactions on Database Systems, 30(1), 122–173.Google Scholar
  51. 51.
    Mishra, N., Chang, H., & Lin, C. (2018). Sensor data distribution and knowledge inference framework for a cognitive-based distributed storage sink environment. IJSNetInternational Journal of Sensor Networks, 26(1), 26–42.Google Scholar
  52. 52.
    Misic, J. V., & Misic, V. B. (2008). Enforcing patient privacy in healthcare wsns through key distribution algorithms. Security and Communication Networks, 1(5), 417–429.Google Scholar
  53. 53.
    Moraes, P., Reale, R., & Martins, J. (2018). A publish/subscribe QoS-aware framework for massive IoT traffic orchestration. CoRR arXiv:abs/1806.03157.
  54. 54.
    Mostafaei, H. (2019). Energy-efficient algorithm for reliable routing of wireless sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567–5575.Google Scholar
  55. 55.
    Niu, J., Cheng, L., Gu, Y., Shu, L., & Das, S. K. (2014). R3E: Reliable reactive routing enhancement for wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 784–794.Google Scholar
  56. 56.
    Noël, G., & Servigne, S. (2004). Po-Tree: un système d’indexation spatio-temporel temps-réel . In: Cassini (ed.) Conférence CASSINI-SIGMA 2004 : Géomatique et Analyse Spatiale, pp. 120–121.Google Scholar
  57. 57.
    Nol, G. (2006). Indexation dans les bases de données capteurs temps réel. Ph.D. thesis, Institut National des Sciences Appliquées de Lyon.Google Scholar
  58. 58.
    Nol, G., & Servigne, S. (2005). Indexation multidimensionnelle de bases de données capteur temps-réel et spatiotemporelles. Ingénierie des Systèmes d’Information, 10(4), 59–88.Google Scholar
  59. 59.
    Pradittasnee, L., Camtepe, S., & Tian, Y. (2017). Efficient route update and maintenance for reliable routing in large-scale sensor networks. IEEE Transactions on Industrial Informatics, 13(1), 144–156.Google Scholar
  60. 60.
    Randhawa, S., & Jain, S. (2017). Data aggregation in wireless sensor networks: Previous research, current status and future directions. Wireless Personal Communications, 97(3), 3355–3425.Google Scholar
  61. 61.
    Ren, Y., Liu, Y., Ji, S., Sangaiah, A. K., & Wang, J. (2018). Incentive mechanism of data storage based on blockchain for wireless sensor networks. Mobile Information Systems, 2018, 1–10.Google Scholar
  62. 62.
    Rifi, N., Rachkidi, E., Agoulmine, N., & Taher, N. C. (2017). Towards using blockchain technology for iot data access protection. In 17th IEEE international conference on ubiquitous wireless broadband, ICUWB 2017 (pp. 1–5), Salamanca, Spain, 12–15 September 2017.Google Scholar
  63. 63.
    Sadagopan, N., Krishnamachari, B., & Helmy, A. (2003). The acquire mechanism for efficient querying in sensor networks. In Proceedings of the IEEE international workshop on sensor network protocols and applications (pp. 149–155). IEEE.Google Scholar
  64. 64.
    Samara, K., & Hosseini, H. (2015). A routing protocol for wireless sensor networks with reliable delivery of data. In IEEE international conference on data science and data intensive systems (pp. 632–635), Sydney, Australia.Google Scholar
  65. 65.
    Sarkar, S. K. (2012). Wireless sensor and ad hoc networks under diversified network scenarios. Norwood: Artech House.Google Scholar
  66. 66.
    Servigne, S., & Noël, G. (2008). Real time and spatiotemporal data indexing for sensor based databases. In Zlatanova & Li (Eds.), Geo-information technology for emergency response (pp. 123–141). London: Taylor & Francis Group.Google Scholar
  67. 67.
    Sheltami, T., Musaddiq, M., & Shakshuki, E. (2016). Data compression techniques in wireless sensor networks. Future Generation Computer Systems, 64, 151–162.Google Scholar
  68. 68.
    Shen, L., Ma, J., Liu, X., Wei, F., & Miao, M. (2017). A secure and efficient id-based aggregate signature scheme for wireless sensor networks. IEEE Internet of Things Journal, 4(2), 546–554.Google Scholar
  69. 69.
    Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3(5), 637–646.Google Scholar
  70. 70.
    Shwe, H. Y., Gacanin, H., & Adachi, F. (2010). Multi-layer WSN with power efficient buffer management policy. In IEEE international conference on communication systems (pp. 36–40). IEEE.Google Scholar
  71. 71.
    Sicari, S., Rizzardi, A., Cappiello, C., Miorandi, D., & Coen-Porisini, A. (2018). Toward data governance in the internet of things (pp. 59–74). Cham: Springer.Google Scholar
  72. 72.
    Srisathapornphat, C., Jaikaeo, C., & chung Shen, C. (2001). Sensorinformation networking architecture and applications. IEEE Personal Communications, 8, 52–59.Google Scholar
  73. 73.
    Sun, Y., & Jara, A. J. (2014). An extensible and active semantic model of information organizing for the internet of things. Personal and Ubiquitous Computing, 18(8), 1821–1833.Google Scholar
  74. 74.
    Terroso-Saenz, F., González-Vidal, A., Ramallo-González, A. P., & Skarmeta, A. F. (2019). An open iot platform for the management and analysis of energy data. Future Generation Computer Systems, 92, 1066–1079.Google Scholar
  75. 75.
    Thirukrishna, J. T., Karthik, S., & Arunachalam, V. P. (2018). Revamp energy efficiency in homogeneous wireless sensor networks using optimized radio energy algorithm (OREA) and power-aware distance source routing protocol. Future Generation Computer Systems, 81, 331–339.Google Scholar
  76. 76.
    Tongkaw, S., & Tongkaw, A. (2016). A comparison of database performance of MariaDB and MySQL with OLTP workload. In 2016 IEEE conference on open systems (ICOS) (pp. 117–119).Google Scholar
  77. 77.
    Tsiftes, N., Dunkels, A., He, Z., & Voigt, T. (2009). Enabling large-scale storage in sensor networks with the coffee file system. In Proceedings of the international conference on information processing in sensor networks (pp. 349–360), IEEE, Washington, DC, USA.Google Scholar
  78. 78.
    Ventrella, A. V., Grieco, L. A., & Piro, G. (2017). Information-centric networking in environmental monitoring: An overview on publish-subscribe implementations. In International Conference on Advanced Video and Signal Based Surveillance (AVSS) (pp. 1–6).Google Scholar
  79. 79.
    Wang, W., De, S., Toenjes, R., Reetz, E., & Moessner, K. (2012). A comprehensive ontology for knowledge representation in the internet of things. In International conference on trust, security and privacy in computing and communications (pp. 1793–1798).Google Scholar
  80. 80.
    Wu, S., Bao, L., Zhu, Z., Yi, F., & Chen, W. (2017). Storage and retrieval of massive heterogeneous IoT data based on hybrid storage. In International conference on natural computation, fuzzy systems and knowledge discovery (pp. 2982–2987), Guilin, China.Google Scholar
  81. 81.
    Xu, J., Guo, S., Xiao, B., & He, J. (2015). Energy-efficient big data storage and retrieval for wireless sensor networks with nonuniform node distribution. Concurrency Computation Practice and Experience, 27(18), 5765–5779.Google Scholar
  82. 82.
    Yao, Y., & Gehrke, J. (2002). The Cougar approach to in-network query processing in sensor networks. SIGMOD Record, 31(3), 9–18.Google Scholar
  83. 83.
    Yi, X., Bouguettaya, A., Georgakopoulos, D., Song, A., & Willemson, J. (2016). Privacy protection for wireless medical sensor data. IEEE Transactions on Dependable and Secure Computing, 13(3), 369–380.Google Scholar
  84. 84.
    Yi, X., Willemson, J., & Nait-Abdesselam, F. (2013). Privacy-preserving wireless medical sensor network. In 2013 12th IEEE international conference on trust, security and privacy in computing and communications (pp. 118–125).Google Scholar
  85. 85.
    Zhang, R., Pan, J., Xie, D., & Wang, F. (2016). NDCMC: a hybrid data collection approach for large-scale wsns using mobile element and hierarchical clustering. IEEE Internet of Things Journal, 3(4), 533–543.Google Scholar
  86. 86.
    Zhao, H., Qin, J., & Hu, J. (2013). An energy efficient key management scheme for body sensor networks. IEEE Transactions on Parallel and Distributed Systems, 24(11), 2202–2210.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratoire d’Informatique, de Traitement de l’Information et des SystèmesNormandie University, UNIHAVRE, LITISLe HavreFrance

Personalised recommendations