Advertisement

Energy harvesting relay-antenna selection in cooperative MIMO/NOMA network over Rayleigh fading

  • Thi Anh LeEmail author
  • Hyung Yun Kong
Article

Abstract

In this paper, a combination system of multi-antenna multiple input multiple output (MIMO) and non-orthogonal multiple access (NOMA) technologies is investigated, in which the source communicates with users using a multiple amplify-and-forward (AF) relaying network. These relay nodes are equipped with a single antenna and employ a power-splitting protocol to harvest energy from received signals, whereas the source and users are multiple-antenna nodes. In addition, two antenna-relay selection methods are considered to enhance the harvested energy at the relay including the maximum ratio transmission (MRT) and transmit antenna selection (TAS) at the source, with maximal-ratio combining at the users, these methods are compared to the performance of the random selection (RS) scheme. To evaluate the performance of the proposed system, we derive analytical expressions of the outage probability and throughput for the MRT and TAS schemes over Rayleigh fading channels, and use a Monte Carlo simulation to verify the accuracy of the analytical results. The results demonstrate the benefit of using MRT and TAS schemes, which provide a better performance than RS schemes, in a MIMO/NOMA system. Moreover, these results characterize the effects of various system parameters, such as power allocation factors, the numbers of antenna and relay nodes, power-splitting ratio, successive interference cancellation and energy-harvesting efficiency, on the system performance of two users of MIMO/NOMA. This is further compared with multiple-antenna conventional orthogonal multiple access (MIMO/OMA) schemes.

Keywords

Non-orthogonal multiple access Multiple-input multiple-output Energy harvesting Amplify-and-forward Maximum ratio transmission Transmit antenna selection 

Notes

Acknowledgements

This work was supported by the 2020 Research Fund of the University of Ulsan.

References

  1. 1.
    Ding, Z., Liu, Y., Choi, J., Sun, Q., & Elkashlan, M. (2017). Application of non-orthogonal multiple access in LTE and 5G networks. IEEE Communications Magazine, 55, 185–191.CrossRefGoogle Scholar
  2. 2.
    Islam, R., Avazov, N., & Dobre, O. A. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19, 721–742.CrossRefGoogle Scholar
  3. 3.
    Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Non-orthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.CrossRefGoogle Scholar
  4. 4.
    Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. K. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35, 2181–2195.CrossRefGoogle Scholar
  5. 5.
    Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communication Letters, 19(8), 1462–1465.CrossRefGoogle Scholar
  6. 6.
    Ding, Z., Fan, P., & Poor, H. V. (2015). On the impact of user pairing on NOMA. In IEEE TVT.Google Scholar
  7. 7.
    Mohammadi, M., Chalise, B. K., Hakimi, A., Mobini, Z., Suraweera, H. A., & Ding, Z. (2018). Beamforming design and power allocation for full-duplex non-orthogonal multiple access cognitive relaying. IEEE Transactions on Communications, 66, 5952–5965.CrossRefGoogle Scholar
  8. 8.
    Ding, Z., Adachi, F., & Poor, H. V. (2016). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.CrossRefGoogle Scholar
  9. 9.
    Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO-NOMA and MIMO-OMA. IEEE Accesss, 4, 2123–2129.CrossRefGoogle Scholar
  10. 10.
    Huang, Y., Zhang, C., Wang, J., Jing, Y., Yang, L., & You, X. (2018). Signal processing for MIMO-NOMA: Present and future challenges. arXiv:1802.00754.
  11. 11.
    Paradiso, J. A., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing, 4, 18–27.CrossRefGoogle Scholar
  12. 12.
    Varshney, L. R. (2008). Transporting information and energy simultaneously. In Information Theory, ISIT 2008 (pp. 1612–1616).Google Scholar
  13. 13.
    Nasir, A. A., & Durrani, S. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRefGoogle Scholar
  14. 14.
    Di, X., Xiong, K., Fan, P., & Yang, H. (2014). Simultaneous wireless information and power transfer in cooperative relay networks with rateless codes. IEEE Transactions on Vehicular Technology, 66(4), 2981–2996.CrossRefGoogle Scholar
  15. 15.
    Zhou, X., Zhang, R., & Ho, C. K. (2014). Wireless information and power transfer in multiuser OFDM systems. IEEE Transactions on Wireless Communications, 13(4), 2282–2294.CrossRefGoogle Scholar
  16. 16.
    Zhang, R., & Ho, C. K. (2012). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.CrossRefGoogle Scholar
  17. 17.
    Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2016). Cooperative non-orthogonal multiple access with simultaneous wireless information and power transfer. IEEE Journal on Selected Areas in Communications, 34, 938–953.CrossRefGoogle Scholar
  18. 18.
    Han, W., Ge, J., & Men, J. (2016). Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading. IET Communications, 10, 2687–2693.CrossRefGoogle Scholar
  19. 19.
    Fan, L., Zhao, N., Lei, X., Chen, Q., Yang, N., & Karagiannidis, G. K. (2018). Outage probability and optimal cache placement for multiple amplify-and-forward relay networks. IEEE Transaction on Vehicular Technology, 67(12), 12373–12378.CrossRefGoogle Scholar
  20. 20.
    Lao, X., Fan, L., Lei, X., Li, J., Yang, N., & Karagiannidis, G. K. (2019). Distributed secure switch-and-stay combining over correlated fading channels. IEEE Transaction on Information Forensics and Security, pp(99), 1–10.Google Scholar
  21. 21.
    Ding, Z., Dai, H., & Poor, H. V. (2016). Relay selection for cooperative NOMA. IEEE Wireless Communications Letters, 5(4), 416–419.CrossRefGoogle Scholar
  22. 22.
    Mobini, Z., Mohammadi, M., Suraweera, H. A., & Ding, Z. (2017). Full-duplex multi-antenna relay assisted cooperative non-orthogonal multiple access. In Proceedings of IEEE Global Communications Conference (GLOBECOM 2017), Singapore (pp. 1–7).Google Scholar
  23. 23.
    Mohammadi, M., Mobini, Z., Suraweera, H. A., & Ding, Z. (2018). Antenna selection in full-duplex cooperative NOMA systems. In Proceedings of IEEE International Conference on Communications (ICC 2018), Kansas City, MO, USA (pp. 1–6).Google Scholar
  24. 24.
    Ikki, S., & Ahmed, M. (2010). On the performance of cooperative-diversity networks with the Nth best relay selection scheme. IEEE Transactions on Wireless Communications, 58, 3062–3069. CrossRefGoogle Scholar
  25. 25.
    Khafagy, M., Ismail, A., Alouini, M. S., & Assa, S. (2015). Efficient cooperative protocols for full-duplex relaying over Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 14, 3456–3470.CrossRefGoogle Scholar
  26. 26.
    Ding, H., Ge, J., da Costa, D. B., et al. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.CrossRefGoogle Scholar
  27. 27.
    Tse, D., & Viswanath, P. (2004). Fundamentals of wireless communication. Cambridge University PressGoogle Scholar
  28. 28.
    Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of intergrals, series, and products (8th ed.). New York: Academic Press.Google Scholar
  29. 29.
    Olver, F. W. J., Lozier, D. W., Boisvert, R. F., & Clark, C. W. (2010). NIST handbook of mathematical functions. New York: Cambridge University Press.zbMATHGoogle Scholar
  30. 30.
    Valenta, C., & Durgin, G. (2014). Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems. IEEE Microwave Magazine, 15(4), 108–120.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of UlsanUlsanSouth Korea

Personalised recommendations