Advertisement

NCCC: NC-OFDM-based control channel establishment in cognitive radio networks using subcarrier pulses

  • Chin-Jung Liu
  • Pei Huang
  • Li XiaoEmail author
Article
  • 7 Downloads

Abstract

In cognitive radio networks (CRN), the secondary users need control channels for negotiating communication parameters and exchanging control messages. Previous studies either preselect a dedicated control channel or find a control channel dynamically using channel-hopping (CH) approaches. However, preselected control channels in the licensed spectrum are unrealistic, and the time it takes for CH-based approaches increases drastically when the number of channels increases. NC-OFDM is a promising technology that can access partial channels and aggregate spectrum fragments. However, forming NC-OFDM-based Control Channel (NCCC) is seldom discussed. Therefore, we propose an efficient approach for guaranteed NCCC establishment by utilizing subcarrier pulses. The results show that the time needed for NCCC is lower than that of CH-based approaches. Additionally, the proposed approach can establish NCCC even if there is no common channel in the CRN. NC-OFDM-based control interfaces improve the control channel establishment rate even if the interfaces can only access the spectrum bandwidth that is equal to one channel.

Keywords

Cognitive Radio NC-OFDM Pulse Control Channel 

Notes

Acknowledgements

This work was partially supported by the U.S. National Science Foundation under grants CNS-1547015 and CNS-1617412.

References

  1. 1.
    Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.  https://doi.org/10.1109/MCOM.2008.4481339.CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50, 2127–2159.CrossRefzbMATHGoogle Scholar
  3. 3.
    Bian, K., Park, J. M., & Chen, R. (2009). A quorum-based framework for establishing control channels in dynamic spectrum access networks. In Proceedings of the 15th annual international conference on mobile computing and networking, MobiCom ’09 (pp. 25–36). ACM, New York, NYGoogle Scholar
  4. 4.
    Blossom, E. (2004). Gnu radio: tools for exploring the radio frequency spectrum. Linux J., 2004(122), 4.Google Scholar
  5. 5.
    Brik, V., Rozner, E., & Banerjee, S. (2005). Dsap: a protocol for coordinated spectrum access. In IEEE DySPAN (pp. 611–614).Google Scholar
  6. 6.
    Buddhikot, M., Kolodzy, P., Miller, S., Ryan, K., & Evans, J. (2005). Dimsumnet: new directions in wireless networking using coordinated dynamic spectrum. In Sixth IEEE international symposium on a world of wireless mobile and multimedia networks. WoWMoM 2005 (pp. 78–85).Google Scholar
  7. 7.
    Chai, E., Lee, J., Lee, S. J., Etkin, R. H., & Shin, K. G. (2012). Building efficient spectrum-agile devices for dummies. In MOBICOM (pp. 149–160).Google Scholar
  8. 8.
    Chowdhury, K., & Akyldiz, I. (2011). Ofdm-based common control channel design for cognitive radio ad hoc networks. IEEE Transactions on Mobile Computing, 10(2), 228–238.CrossRefGoogle Scholar
  9. 9.
    Cidon, A., Nagaraj, K., Katti, S., & Viswanath, P. (2012). Flashback: decoupled lightweight wireless control. In Proceedings of the ACM SIGCOMM 2012 conference on applications, technologies, architectures, and protocols for computer communication, SIGCOMM ’12 (pp. 223–234). ACM, New York, NY, USAGoogle Scholar
  10. 10.
    Company, S. S. (2009). General survey of radio frequency bands (30 mhz to 3 ghz). http://www.sharedspectrum.com/papers/spectrum-reports/
  11. 11.
    Cordeiro, C., & Challapali, K. (2007). C-mac: A cognitive mac protocol for multi-channel wireless networks. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, 2007. DySPAN 2007 (pp. 147–157).Google Scholar
  12. 12.
    Cormio, C., & Chowdhury, K. R. (2009). A survey on mac protocols for cognitive radio networks. Ad Hoc Network, 7(7), 1315–1329.CrossRefGoogle Scholar
  13. 13.
    Cormio, C., & Chowdhury, K. R. (2010). Common control channel design for cognitive radio wireless ad hoc networks using adaptive frequency hopping. Ad Hoc Network, 8(4), 430–438.CrossRefGoogle Scholar
  14. 14.
    Ding, Y., & Xiao, L. (2013). Video on-demand streaming in cognitive wireless mesh networks. IEEE Transactions on Mobile Computing, 12(3), 412–423.CrossRefGoogle Scholar
  15. 15.
    Ettus: Universal software radio peripheral. http://www.ettus.com/
  16. 16.
    Jia, J., Zhang, Q., & Shen, X. (2008). Hc-mac: A hardware-constrained cognitive mac for efficient spectrum management. IEEE Journal on Selected Areas in Communications, 26(1), 106–117.CrossRefGoogle Scholar
  17. 17.
    Kondareddy, Y., & Agrawal, P. (2008). Synchronized mac protocol for multi-hop cognitive radio networks. In IEEE International conference on communications, 2008. ICC ’08 (pp. 3198–3202)Google Scholar
  18. 18.
    Lazos, L., Liu, S., & Krunz, M. (2009). Spectrum opportunity-based control channel assignment in cognitive radio networks. In Proceedings of the 6th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, SECON’09 (pp. 135–143). IEEE Press, PiscatawayGoogle Scholar
  19. 19.
    Lin, Z., Liu, H., Chu, X., & Leung, Y. W. (2013). Enhanced jump-stay rendezvous algorithm for cognitive radio networks. IEEE Communications Letters, 17(9), 1742–1745.CrossRefGoogle Scholar
  20. 20.
    Liu, C.J., Huang, P., & Xiao, L. (2016). Efficient nc-ofdm-based control channel establishment in cognitive radio networks. In 2016 IEEE 13th international conference on mobile ad hoc and sensor systems (MASS) (pp. 28–36).  https://doi.org/10.1109/MASS.2016.015
  21. 21.
    Liu, H., Lin, Z., Chu, X., & Leung, Y. W. (2010). Ring-walk based channel-hopping algorithms with guaranteed rendezvous for cognitive radio networks. In Proceedings of the 2010 IEEE/ACM Int’l conference on green computing and communications & int’l conference on cyber, physical and social computing, GREENCOM-CPSCOM ’10 (pp. 755–760). IEEE Computer Society, Washington, DC, USAGoogle Scholar
  22. 22.
    Liu, H., Lin, Z., Chu, X., & Leung, Y. W. (2012). Jump-stay rendezvous algorithm for cognitive radio networks. IEEE Transactions on Parallel and Distributed Systems, 23(10), 1867–1881.CrossRefGoogle Scholar
  23. 23.
    Lo, B. F. (2011). A survey of common control channel design in cognitive radio networks. Physics Communication, 4(1), 26–39.  https://doi.org/10.1016/j.phycom.2010.12.004.CrossRefGoogle Scholar
  24. 24.
    Ma, L., Han, X., & Shen, C. C. (2005). Dynamic open spectrum sharing mac protocol for wireless ad hoc networks. In 2005 First IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005. (pp. 203–213)Google Scholar
  25. 25.
    Su, H., & Zhang, X. (2008). Cross-layer based opportunistic mac protocols for qos provisionings over cognitive radio wireless networks. IEEE Journal on Selected Areas in Communications, 26(1), 118–129.CrossRefGoogle Scholar
  26. 26.
    Theis, N., Thomas, R., & DaSilva, L. (2011). Rendezvous for cognitive radios. IEEE Transactions on Mobile Computing, 10(2), 216–227.CrossRefGoogle Scholar
  27. 27.
    Vutukuru, M., Balakrishnan, H., & Jamieson, K. (2009). Cross-layer wireless bit rate adaptation. In Proceedings of the ACM SIGCOMM 2009 conference on data communication, SIGCOMM ’09 (pp. 3–14). ACM, New YorkAGoogle Scholar
  28. 28.
    Yang, L., Hou, W., Cao, L., Zhao, B. Y., & Zheng, H. (2010). Supporting demanding wireless applications with frequency-agile radios. In NSDI (pp. 65–80).Google Scholar
  29. 29.
    Yang, L., Zhang, Z., Hou, W., Zhao, B. Y., & Zheng, H. (2011). Papyrus: A software platform for distributed dynamic spectrum sharing using sdrs. SIGCOMM Computer Communication Review, 41(1), 31–37.  https://doi.org/10.1145/1925861.1925866.CrossRefGoogle Scholar
  30. 30.
    Yin, S., Chen, D., Zhang, Q., Liu, M., & Li, S. (2012). Mining spectrum usage data: A large-scale spectrum measurement study. IEEE Transactions on Mobile Computing, 11(6), 1033–1046.CrossRefGoogle Scholar
  31. 31.
    Zhang, Y., Li, Q., Yu, G., & Wang, B. (2011). Etch: Efficient channel hopping for communication rendezvous in dynamic spectrum access networks. In INFOCOM, 2011 Proceedings IEEE (pp. 2471–2479)Google Scholar
  32. 32.
    Zhao, J., Zheng, H., & Yang, G. H. (2005). Distributed coordination in dynamic spectrum allocation networks. In First IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 259–268).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringMichigan State UniversityEast LansingUSA

Personalised recommendations